Homework assignments are to be completed individually. Hand-written submissions are fine, but they must be readable. Due at the beginning of class. Total points: 100, 3.3% of course grade.

1. [15 Points] Induction Variables. Perform induction variable detection, strength reduction and induction variable elimination on Figure 9.5 in book.

2. [15 Points] SSA. Translate Figure 9.3 into SSA. Perform copy propagation and dead code elimination on SSA.

 a = read()
 b = read()
 z = read()
 w = read()
 x = a - b
 y = a + b
 j = 0

 loop:
 z = a * b
 w = z
 if (w==0) goto L2
 w = a * b

 L2:
 x = a + b
 j = j + 1
 if (z < j) goto loop

 print w,x,y,z

 (a) Perform pessimistic global value numbering.
 (b) Transform the SSA code based on the optimistic global value numbering results. After doing so, what optimization on SSA (hint problem 2 in this HW) should be performed? Perform it.
 (c) Rewrite the resulting code in 3-address code.

4. [20 points] Data dependence analysis and unimodular transformations

 (a) For the below loop, what is the direction vector for the output dependences between writes to A[i]? (Hint: Recall that (*, <), (*, =), and (*, >) are not legal dependence vectors.)
 (b) For the below loop, what is the distance vector for the flow dependence?
(c) What is the unimodular transformation matrix that specifies a permutation of the i and j loops in the program for problem 4?

(d) Is the loop below fully permutable? Why or why not?

(e) Which loop carries each of the dependences? What is a possible parallelization strategy for the above loop?

```c
for (i=0; i<N; i++) {
    for (j=3; j<M; j++) {
        B[j-1][i] = sin(i * j);
    }
}
```

5. [15 points] Loop Fission and the Kelly and Pugh Transformation Framework

(a) Show whether loop fission is legal or illegal for the following program using the K&P transformation framework.

```c
for (i=0; i<N; i++) {
    A[i] = ... ;
    ... = A[i+1];
}
```

(b) Show whether loop fission is legal or illegal for the following program using the K&P transformation framework.

```c
for (i=0; i<N; i++) {
    A[i] = ... ;
    ... = A[i-2];
}
```

6. [15 points] Loop transformations and Fourier Motzkin. Skew the loop to make it permutable and then permute the loop. Write the transformed code.

```c
for (i=1; i<N; i++) {
    for (j=1; j<(i+1); j++) {
    }
}
```