Introduction to Data-flow analysis

Last Time
- Implementing a Mark and Sweep GC

Today
- Control flow graphs
- Liveness analysis
- Register allocation

Data-flow Analysis

Idea
- **Data-flow analysis** derives information about the **dynamic** behavior of a program by only examining the **static** code

Example
- How many registers do we need for the program on the right?
- Easy bound: the number of variables used (3)
- Better answer is found by considering the **dynamic** requirements of the program

```plaintext
1  a := 0
2 L1: b := a + 1
3  c := c + b
4  a := b * 2
5  if a < 9 goto L1
6  return c
```
Liveness Analysis

Definition

– A variable is **live** at a particular point in the program if its value at that point will be used in the future (**dead**, otherwise).
 ∴ To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation

– A program contains an unbounded number of variables
– Must execute on a machine with a bounded number of registers
– Two variables can use the same register if they are never in use at the same time (i.e., never simultaneously live).
 ∴ Register allocation uses liveness information

Control Flow Graphs (CFGs)

Definition

– A **CFG** is a graph whose nodes represent program statements and whose directed edges represent control flow

Example

1. \(a := 0 \)
2. \[L1: \quad b := a + 1 \]
3. \(c := c + b \)
4. \(a := b \times 2 \)
5. if \(a < 9 \) goto \(L1 \)
6. return \(c \)
Terminology

Flow Graph Terms
- A CFG node has **out-edges** that lead to **successor** nodes and **in-edges** that come from **predecessor** nodes.
- \(\text{pred}[n] \) is the set of all predecessors of node \(n \)
- \(\text{succ}[n] \) is the set of all successors of node \(n \)

Examples
- Out-edges of node 5: (5→6) and (5→2)
- \(\text{succ}[5] = \{2,6\} \)
- \(\text{pred}[5] = \{4\} \)
- \(\text{pred}[2] = \{1,5\} \)

Liveness by Example

What is the live range of b?
- Variable \(b \) is read in statement 4, so \(b \) is live on the (3→4) edge.
- Since statement 3 does not assign into \(b \), \(b \) is also live on the (2→3) edge.
- Statement 2 assigns \(b \), so any value of \(b \) on the (1→2) and (5→2) edges are not needed, so \(b \) is dead along these edges.

\(b \)'s live range is (2→3→4)
Liveness by Example (cont)

Live range of \(a\)
- \(a\) is live from \((1\rightarrow2)\) and again from \((4\rightarrow5\rightarrow2)\)
- \(a\) is dead from \((2\rightarrow3\rightarrow4)\)

Live range of \(b\)
- \(b\) is live from \((2\rightarrow3\rightarrow4)\)

Live range of \(c\)
- \(c\) is live from \((entry\rightarrow1\rightarrow2\rightarrow3\rightarrow4\rightarrow5\rightarrow2, 5\rightarrow6)\)

Variables \(a\) and \(b\) are never simultaneously live, so they can share a register

Uses andDefs

Def (or definition)
- An assignment of a value to a variable
- \(\text{def}_\text{node}[v] = \) set of CFG nodes that define variable \(v\)
- \(\text{def}[n] = \) set of variables that are defined at node \(n\)

Use
- A read of a variable’s value
- \(\text{use}_\text{node}[v] = \) set of CFG nodes that use variable \(v\)
- \(\text{use}[n] = \) set of variables that are used at node \(n\)

More precise definition of liveness
- A variable \(v\) is live on a CFG edge if
 1. \(\exists\) a directed path from that edge to a use of \(v\) (node in \(\text{use}_\text{node}[v]\)), and
 2. that path does not go through any def of \(v\) (no nodes in \(\text{def}_\text{node}[v]\))
The Flow of Liveness

Data-flow
- Liveness of variables is a property that flows through the edges of the CFG.

Direction of Flow
- Liveness flows **backwards** through the CFG, because the behavior at future nodes determines liveness at a given node.
 - Consider \(a \)
 - Consider \(b \)
 - Later, we’ll see other properties that flow **forward**

Liveness at Nodes
- We have liveness on edges
 - How do we talk about liveness at nodes?
- Two More Definitions
 - A variable is **live-out** at a node if it is live on **any** of that node’s out-edges.
 - A variable is **live-in** at a node if it is live on **any** of that node’s in-edges.
Computing Liveness

Rules for computing liveness

1. Generate liveness:
 If a variable is in use[n], it is live-in at node n

2. Push liveness across edges:
 If a variable is live-in at a node n then it is live-out at all nodes in pred[n]

3. Push liveness across nodes:
 If a variable is live-out at node n and not in def[n] then the variable is also live-in at n

Data-flow equations

\[\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

\[\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s] \]

Solving the Data-flow Equations

Algorithm

\[
\begin{align*}
\text{for each} & \quad \text{node } n \text{ in CFG} \\
\text{in}[n] &= \emptyset; \quad \text{out}[n] = \emptyset \\
\text{repeat} & \\
\text{for each} & \quad \text{node } n \text{ in CFG} \\
\text{in}'[n] &= \text{in}[n] \\
\text{out}'[n] &= \text{out}[n] \\
\text{in}[n] &= \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \\
\text{out}[n] &= \bigcup_{s \in \text{succ}[n]} \text{in}[s] \\
\text{until} & \quad \text{in}'[n] = \text{in}[n] \text{ and out}'[n] = \text{out}[n] \text{ for all } n
\end{align*}
\]

This is iterative data-flow analysis (for liveness analysis)
Example

Data-flow Equations for Liveness

\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

\[
\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]
\]

Liveness Analysis in the MiniJava Compiler

Currently …
- Parse into AST
- Allocate space on stack for locals and parameters and space in heap for member variables
- Use stack for expression evaluation
- Generate MIPS code from AST

To perform data-flow analysis …
- Need intermediate representation like 3-address code
- Use temporaries for parameters, locals, and expression results
- Indicate uses and defs of temporaries in each 3-address code instruction
- Create a control-flow graph with each 3-address code instruction as a node
Register Allocation

Problem
– Assign an unbounded number of symbolic registers to a fixed number of architectural registers
– Simultaneously live data must be assigned to different architectural registers

Goal
– Minimize overhead of accessing data
 – Memory operations (loads & stores)
 – Register moves

Scope of Register Allocation

Expression
Local
Loop
Global
Interprocedural
Granularity of Allocation

What is allocated to registers?
- Variables
- Live ranges/Webs (i.e., du-chains with common uses)
- Values (i.e., definitions; same as variables with SSA)

```
\begin{align*}
  s_1: & x := 5 \\
  s_2: & y := x \\
  s_3: & x := y + 1 \\
  s_4: & \ldots x \ldots \\
  s_5: & x := 3 \\
  s_6: & \ldots x \ldots \\
\end{align*}
```

Variables: 2 (x & y)
Live Ranges/Web: 3 (s_1 \rightarrow s_2, s_4;
 s_2 \rightarrow s_3;
 s_3, s_5 \rightarrow s_6)
Values: 4 (s_1, s_2, s_3, s_5, \phi (s_3, s_4))

What are the tradeoffs?

Each allocation unit is given a symbolic register name (e.g., t1, t2, etc.)

Global Register Allocation by Graph Coloring

Idea [Cocke 71, First allocator [Chaitin 81]
1. Construct interference graph $G=(N,E)$
 - Represents notion of “simultaneously live”
 - Nodes are units of allocation (e.g., variables, live ranges, values)
 - \exists edge $(n_1, n_2) \in E$ if n_1 and n_2 are simultaneously live
 - Symmetric (not reflexive nor transitive)
2. Find k-coloring of G (for k registers)
 - Adjacent nodes can’t have same color
3. Allocate the same register to all allocation units of the same color
 - Adjacent nodes must be allocated to distinct registers
Interference Graph Example (Variables)

Computing the Interference Graph

Use results of live variable analysis

for each symbolic-register/temporary t_i do
for each symbolic-register/temporary t_j ($j < i$) do
 for each def $\in \{\text{definitions of } t_i\}$ do
 if (t_j is live out at def) then
 $E \leftarrow E \cup (t_i, t_j)$

Options
- treat all instructions the same
- treat MOVE instructions special
- which is better?
Allocating Registers Using the Interference Graph

K-coloring
- Color graph nodes using up to \(k \) colors
- Adjacent nodes must have different colors

Allocating to \(k \) registers = finding a \(k \)-coloring of the interference graph
- Adjacent nodes must be allocated to distinct registers

But. . .
- Optimal graph coloring is NP-complete
 - Optimal register allocation is NP-complete, too (must approximate)
- What if we can’t \(k \)-color a graph? (must **spill**)

Register Allocation: Spilling

If we can’t find a \(k \)-coloring of the interference graph
- Spill variables (nodes) until the graph is colorable

Choosing variables to spill
- Choose arbitrarily or
- Choose least frequently accessed variables
- Break ties by choosing nodes with the most conflicts in the interference graph
- Yes, these are heuristics!
Spilling (Original CFG and Interference Graph)

```
a := ... 
b := ... 
c := ...
... a ...
d := ...

... d ...
f := ...

... c ...
f := ...
... d ...

c := ...
```

Spilling (After spilling b)

```
a := ...
b_1 := ...
M[fp+4] := b_1
c := ...
... a ...
d := ...

... d ...
f := ...

... c ...
f := ...
... d ...

c := ...
```

```
a

b_1

b_2

a

b_1

b_2

e

f

c

d

f = M[fp+4]
b_2 = M[fp+4]
... b_2 ...
```
Simple Greedy Algorithm for Register Allocation

```plaintext
for each $n \in N$ do  
    { select $n$ in decreasing order of weight }  
    if $n$ can be colored then  
        do it  
        { reserve a register for $n$ }  
    else  
        Remove $n$ (and its edges) from graph  
        { allocate $n$ to stack (spill) }
```

Example

Attempt to 3-color this graph (, ,)

Weighted order:

```
     a
    / \   
   b   c
     \  /
      f \
       d
```

What if you use a different order?
Example

Attempt to 2-color this graph (,)

Weighted order:

```
  a
  b
  c
```

Concepts

Liveness
- Used in register allocation
- Generating liveness
- Flow and direction
- Data-flow equations and analysis

Control flow graphs

Register allocation
- scope of allocation
- granularity: what is being allocated to a register
- order that allocation units are visited in matters in all heuristic algorithms

Global approach: greedy coloring
Next Time

Reading
– Ch. 8.4, 9.2-9.25, intro to data-flow analysis
– Ch 8.8 and Briggs paper, register allocation

Lecture
– Improvements to graph coloring register allocators
– Register allocation across procedure calls

Suggested Exercises
– See schedule on website