Compiling for Parallelism & Locality

Last time
- SSA and its uses

Today
- Parallelism and locality
- Data dependences and loops

The Problem: Mapping programs to architectures

Goal: keep each core as busy as possible.
Challenge: get the data to the core when it needs it

Example 1: Loop Permutation for Improved Locality

Sample code: Assume Fortran’s Column Major Order array layout

```
Sample code: Assume Fortran’s Column Major Order array layout

Example 1: Loop Permutation for Improved Locality

Sample code: Assume Fortran’s Column Major Order array layout

Example 2: Parallelization

Can we parallelize the following loops?

```
```
Data Dependences

Recall
– A data dependence defines ordering relationship two between statements
– In executing statements, data dependences must be respected to preserve correctness

Example

\[
\begin{align*}
    s_1 & \quad a := 5; \\
    s_2 & \quad b := a + 1; \\
    s_3 & \quad a := 6;
\end{align*}
\]

Data Dependences and Loops

How do we identify dependences in loops?

\[
\text{do } i = 1,5 \\
\quad A(i) = A(i-1) + 1 \\
\text{enddo}
\]

Simple view
– Imagine that all loops are fully unrolled
– Examine data dependences as before

Problems
– Impractical and often impossible
– Lose loop structure
Concepts needed for automating loop transformations

Questions
- How do we determine if a transformation or parallelization is legal?
- What abstraction do we use for loops?
- How do we represent transformations and parallelization?
- How do we generate the transformed code?
- How do we determine when a transformation is going to be beneficial?

Today
- Basic abstractions for loops and dependences and computing dependences

Thursday
- Abstractions for loop transformations and determining their legality
- Code generation after performing a loop transformation

Dependences and Loops

Loop-independent dependences

\[
\begin{align*}
do \ i & = 1,100 \\
A(i) & = B(i)+1 \\
C(i) & = A(i)*2 \\
enddo
\end{align*}
\]

Dependences within the same loop iteration

Loop-carried dependences

\[
\begin{align*}
do \ i & = 1,100 \\
A(i) & = B(i)+1 \\
C(i) & = A(i-1)*2 \\
enddo
\end{align*}
\]

Dependences that cross loop iterations
Dependence Testing in General

General code

```
 do i_1 = l_1, h_1
 ...
 do i_n = l_n, h_n
 A(f(i_1, ..., i_n)) = ... A(g(i_1, ..., i_n))
 enddo
 ...
 enddo
```

There exists a dependence between iterations I=(i_1, ..., i_n) and J=(j_1, ..., j_n) when

- \( f(I) = g(J) \)
- \((l_1, ..., l_n) < I, J < (h_1, ..., h_n)\)
- \( I < J \) or \( J < I \), where < is lexicographically less

Algorithms for Solving the Dependence Problem

Heuristics can say NO or MAYBE
- GCD test (Banerjee76, Towle76): determines whether integer solution is possible, no bounds checking
- Banerjee test (Banerjee 79): checks real bounds
- Independent-variables test (pg. 820): useful when inequalities are not coupled
- I-Test (Kong et al. 90): integer solution in real bounds
- Lambda test (Li et al. 90): all dimensions simultaneously
- Delta test (Goff et al. 91): pattern matches for efficiency
- Power test (Wolfe et al. 92): extended GCD and Fourier Motzkin combination

Use some form of Fourier-Motzkin elimination for integers, exponential worst-case
- Parametric Integer Programming (Feautrier91)
- Omega test (Pugh92)
**Dependence Testing**

Consider the following code...

```plaintext
do i = 1,5
 A(3*i+2) = A(2*i+1)+1
enddo
```

**Question**
- How do we determine whether one array reference depends on another across iterations of an iteration space?

---

**Dependence Testing: Simple Case**

Sample code

```plaintext
do i = l,h
 A(a*i+c_1) = ... A(a*i+c_2)
enddo
```

**Dependence?**
- $a*i_1+c_1 = a*i_2+c_2$, or
- $a*i_1 - a*i_2 = c_2 - c_1$
- Solution may exist if $a$ divides $c_2 - c_1$
GCD Test

Idea
– Generalize test to linear functions of iterators/induction variables

Code

\[
\begin{align*}
&\text{do } i = l_1, h_1 \\
&\quad \text{do } j = l_j, h_j \\
&\quad \quad A(a_1 \cdot i + a_2 \cdot j + a_0) = \ldots A(b_1 \cdot i + b_2 \cdot j + b_0) \ldots \\
&\text{enddo}
\end{align*}
\]

Again
– \( a_1 \cdot i_1 - b_1 \cdot i_2 + a_2 \cdot j_1 - b_2 \cdot j_2 = b_0 - a_0 \)
– Solution exists if \( \gcd(a_1, a_2, b_1, b_2) \) divides \( b_0 - a_0 \)

Example

Code

\[
\begin{align*}
&\text{do } i = l_1, h_1 \\
&\quad \text{do } j = l_j, h_j \\
&\quad \quad A(4 \cdot i + 2 \cdot j + 1) = \ldots A(6 \cdot i + 2 \cdot j + 4) \ldots \\
&\text{enddo}
\end{align*}
\]

\( \gcd(4, -6, 2, -2) = 2 \)

Does 2 divide 4-1?
**Banerjee Test**

```plaintext
for (i=L; i<=U; i++) {
 x[a0 + a1*i] = ...
 ... = x[b0 + b1*i]
}
```

Does $a_0 + a_1*i = b_0 + b_1*i'$ for some real $i$ and $i'$?

If so then $(a_1*i - b_1*i') = (b_0 - a_0)$

Determine upper and lower bounds on $(a_1*i - b_1*i')$

```plaintext
for (i=1; i<=5; i++) {
 x[i+5] = x[i];
}
```

upper bound $= a_1*\text{max}(i) - b_1*\text{min}(i') = 4$
lower bound $= a_1*\text{min}(i) - b_1*\text{max}(i') = -4$

$b_0 - a_0 =$

---

**Example 1: Loop Permutation (reprise)**

**Sample code**

```plaintext
do j = 1,6
do i = 1,5
 A(j,i) = A(j,i)+1
endo
endo
```

```plaintext
do i = 1,5
do j = 1,6
 A(j,i) = A(j,i)+1
endo
endo
```

**Why is this legal?**

- No loop-carried dependences, so we can arbitrarily change order of iteration execution
Example 2: Parallelization (reprise)

Why can’t this loop be parallelized?

\[
\text{do } i = 1,100 \\
\text{ \hspace{1cm} } A(i) = A(i-1)+1 \\
\text{enddo}
\]

Loop carried dependence

Why can this loop be parallelized?

\[
\text{do } i = 1,100 \\
\text{ \hspace{1cm} } A(i) = A(i)+1 \\
\text{enddo}
\]

No loop carried dependence, No solution to dependence problem

Iteration Spaces

Idea

– Explicitly represent the iterations of a loop nest

Example

\[
\text{do } i = 1,6 \\
\text{ do } j = 1,5 \\
\text{ \hspace{1cm} } A(i,j) = A(i-1,j-1)+1 \\
\text{enddo} \\
\text{enddo}
\]

Iteration Space

– A set of tuples that represents the iterations of a loop
– Can visualize the dependences in an iteration space
**Distance Vectors**

**Idea**
- Concisely describe dependence relationships between iterations of an iteration space
- For each dimension of an iteration space, the distance is the number of iterations between accesses to the same memory location

**Definition**
- $v = i^T - i^S$

**Example**

```plaintext
do i = 1, 6
 do j = 1, 5
 A(i, j) = A(i-1, j-2) + 1
 enddo
enddo
```

**Distance Vector:** $(1, 2)$

**Distance Vectors and Loop Transformations**

**Idea**
- Any transformation we perform on the loop must respect the dependences

**Example**

```plaintext
do i = 1, 6
 do j = 1, 5
 A(i, j) = A(i-1, j-2) + 1
 enddo
enddo
```

**Can we permute the $i$ and $j$ loops?**
Distance Vectors and Loop Transformations

Idea
- Any transformation we perform on the loop must respect the dependences

Example

\[
\begin{align*}
&\text{do } j = 1, 5 \\
&\quad \text{do } i = 1, 6 \\
&\qquad A(i,j) = A(i-1,j-2)+1 \\
&\qquad \text{enddo} \\
&\text{enddo}
\end{align*}
\]

Can we permute the \(i\) and \(j\) loops?
- Yes

Distance Vectors: Legality

Definition
- A dependence vector, \(v\), is lexicographically nonnegative when the leftmost entry in \(v\) is positive or all elements of \(v\) are zero
  - Yes: \((0,0,0), (0,1), (0,2,-2)\)
  - No: \((-1), (0,-2), (0,-1,1)\)
- A dependence vector is legal when it is lexicographically nonnegative (assuming that indices increase as we iterate)

Why are lexicographically negative distance vectors illegal?

What are legal direction vectors?
Data Dependence Terminology

We say statement \( s_2 \) depends on \( s_1 \)
- **True (flow) dependence**: \( s_1 \) writes memory that \( s_2 \) later reads
- **Anti-dependence**: \( s_1 \) reads memory that \( s_2 \) later writes
- **Output dependences**: \( s_1 \) writes memory that \( s_2 \) later writes
- **Input dependences**: \( s_1 \) reads memory that \( s_2 \) later reads

**Notation**: \( s_1 \preceq s_2 \)
- \( s_1 \) is called the **source** of the dependence
- \( s_2 \) is called the **sink** or **target**
- \( s_1 \) must be executed before \( s_2 \)

Example

**Code**

```plaintext```
 do i = 1,h
 A(2*i+2) = A(2*i-2)+1
 enddo
```

**Dependence?**

\[
2*i_1 - 2*i_2 = -2 - 2 = -4
\]

(yes, 2 divides -4)

**Kind of dependence?**
- Anti? \( i_2 + d = i_1 \) \( \Rightarrow \) \( d = -2 \)
- Flow? \( i_1 + d = i_2 \) \( \Rightarrow \) \( d = 2 \)
Example

Sample code

\[
\begin{align*}
&\text{do } i = 1, 6 \\
&\quad \text{do } j = 1, 5 \\
&\quad \quad A(i, j) = A(i-1, j+1) + 1 \\
&\quad \text{enddo} \\
&\text{enddo}
\end{align*}
\]

Kind of dependence: Flow

Distance vector: \((1, -1)\)

Exercise

Sample code

\[
\begin{align*}
&\text{do } j = 1, 5 \\
&\quad \text{do } i = 1, 6 \\
&\quad \quad A(i, j) = A(i-1, j+1) + 1 \\
&\quad \text{enddo} \\
&\text{enddo}
\end{align*}
\]

Kind of dependence: Anti

Distance vector: \((1, -1)\)
Example 2: Parallelization (reprise)

Why can’t this loop be parallelized?

\[
\text{do } i = 1,100 \\
\quad A(i) = A(i-1)+1 \\
\text{endo}
\]

Why can this loop be parallelized?

\[
\text{do } i = 1,100 \\
\quad A(i) = A(i)+1 \\
\text{endo}
\]

Distance Vector: (1)

Distance Vector: (0)

Protein String Matching Example

\[q = k_1\]
\[r = k_2\]
\[\text{score}[i,j] = 0 \text{ for the whole array}\]

\[
\text{for } i=1 \text{ to } n1-1 \\
\quad h[i,0] = p[i,0] = 0 \\
\quad f[i,0] = -q \\
\quad \text{for } j=1 \text{ to } n0-1 \\
\quad \quad f[i,j] = \max(f[i,j-1],h[i,j-1]-q)-r \\
\quad \quad \text{EE}[i,j] = \max(\text{EE}[i-1,j],\text{HH}[i-1,j],-q)-r \\
\quad \quad h[i,j] = p[i,j-1] + \text{pam2}[aa1[i],aa0[j]] \\
\quad \quad h[i,j] = \max(\max(0,\text{EE}[i,j]), \max(f[i,j],h[i,j])) \\
\quad \quad p[i,j] = \text{HH}[i-1,j] \\
\quad \quad \text{HH}[i,j] = h[i,j] \\
\quad \quad \text{score}[i,j] = \max(\text{score}[i,j-1],h[i,j]) \\
\quad \text{endfor}
\]
\[
\text{endfor}
\]

\[\text{return } \text{score}[n1-1,n0-1]\]
Loop-Carried Dependences

Definition
- A dependence $D=(d_1,...,d_n)$ is carried at loop level $i$ if $d_i$ is the first nonzero element of $D$

Example
```plaintext
do i = 1, 6
 do j = 1, 6
 A(i, j) = B(i-1, j) + 1
 B(i, j) = A(i, j-1) * 2
 enddo
enddo
```

Distance vectors: (0,1) for accesses to $A$
(1,0) for accesses to $B$

Loop-carried dependences
- The j loop carries dependence due to $A$
- The i loop carries dependence due to $B$

Parallelization

Idea
- Each iteration of a loop may be executed in parallel if that loop carries no dependences

Example (different from last slide)
```plaintext
do j = 1, 5
 do i = 1, 6
 A(i, j) = B(i-1, j-1) + 1
 B(i, j) = A(i, j-1) * 2
 enddo
enddo
```

Distance Vectors:
- (1,0) for $A$ (flow)
- (1,1) for $B$ (flow)
Loop-Carried, Storage-Related Dependences

Problem
– Loop-carried dependences inhibit parallelism
– Scalar references result in loop-carried dependences

Example

\[
\begin{align*}
do \ i &= 1,6 \\
\quad \ t &= A(i) + B(i) \\
\quad \ C(i) &= t + 1/t \\
enddo
\end{align*}
\]

Can this loop be parallelized? No.
What kind of dependences are these? Anti dependences.

Convention for these slides: Arrays start with upper case letters, scalars do not

Direction Vector

Definition
– A direction vector serves the same purpose as a distance vector when less precision is required or available
– Element \( i \) of a direction vector is \(<, >, \) or \(=\) based on whether the source of the dependence precedes, follows or is in the same iteration as the target in loop \( i \)

Example

\[
\begin{align*}
do \ i &= 1,6 \\
\quad \ do \ j &= 1,5 \\
\quad \quad \ A(i,j) &= A(i-1,j-1) + 1 \\
enddo \\
enddo
\end{align*}
\]

Direction vector: \((<, <)\)
Distance vector: \((1, 1)\)
**Removing False Dependences with Scalar Expansion**

**Idea**
- Eliminate false dependences by introducing extra storage

**Example**

```fortran
do i = 1,6
 T(i) = A(i) + B(i)
 C(i) = T(i) + 1/T(i)
enddo
```

Can *this* loop be parallelized? $i \rightarrow$

**Disadvantages?**

**Scalar Expansion Details**

**Restrictions**
- The loop must be a **countable** loop
  *i.e.* The loop trip count must be independent of the body of the loop
- The expanded scalar must have no **upward exposed uses** in the loop
  ```fortran
 do i = 1,6
 print(t)
 t = A(i) + B(i)
 C(i) = t + 1/t
 enddo
  ```
- Nested loops may require much more storage
- When the scalar is live after the loop, we must move the correct array value into the scalar
**Concepts**

**Improve performance by ...**
- improving data locality
- parallelizing the computation

**Data Dependence Testing**
- general formulation of the problem
- GCD test and Banerjee test

**Data Dependences**
- iteration space
- distance vectors and direction vectors
- loop carried

**Transformation legality**
- must respect data dependences

---

**Next Time**

**Reading**
- Ch 11.4-11.6

**Lecture**
- Abstractions for loop transformations and checking their legality
- Code generation after transformations have been performed