Tiling: A Data Locality Optimizing Algorithm

Previously
– Kelly & Pugh transformation framework
– Affine space partitions for parallelism

Today
– “Unroll and Jam” and Tiling
– Specifying tiling in the Kelly and Pugh transformation framework
– Status of code generation for tiling

Loop Unrolling

Motivation
– Reduces loop overhead
– Improves effectiveness of other transformations
 – Code scheduling
 – CSE

The Transformation
– Make n copies of the loop: n is the unrolling factor
– Adjust loop bounds accordingly
Loop Unrolling (cont)

Example

do i=1,n
 A(i) = B(i) + C(i)
endo

do i=1,n-1 by 2
 A(i) = B(i) + C(i)
 A(i+1) = B(i+1) + C(i+1)
endo
 if (i=n)
 A(i) = B(i) + C(i)

Details

- When is loop unrolling legal?
- Handle end cases with a cloned copy of the loop
 - Enter this special case if the remaining number of iteration is less than the unrolling factor

Loop Balance

Problem

- We’d like to produce loops with the right balance of memory operations and floating point operations
- The ideal balance is machine-dependent
 - e.g. How many load-store units are connected to the L1 cache?
 - e.g. How many functional units are provided?

Example

do j = 1,2*n
 do i = 1,m
 A(j) = A(j) + B(i)
 enddo
endo
endo

What can we do?

- The inner loop has 1 memory operation per iteration and 1 floating point operation per iteration
- If our target machine can only support 1 memory operation for every two floating point operations, this loop will be memory bound
Unroll and Jam

Idea
– Restructure loops so that loaded values are used many times per iteration

Unroll and Jam
– Unroll the outer loop some number of times
– Fuse (Jam) the resulting inner loops

Example

\[
\begin{align*}
\text{do } j &= 1, 2n \\
\text{do } i &= 1, m \\
A(j) &= A(j) + B(i) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

Unroll the Outer Loop

\[
\begin{align*}
\text{do } j &= 1, 2n \text{ by } 2 \\
\text{do } i &= 1, m \\
A(j) &= A(j) + B(i) \\
\text{enddo} \\
\text{do } i &= 1, m \\
A(j+1) &= A(j+1) + B(i) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

Unroll and Jam Example (cont)

Unroll the Outer Loop

\[
\begin{align*}
\text{do } j &= 1, 2n \text{ by } 2 \\
\text{do } i &= 1, m \\
A(j) &= A(j) + B(i) \\
\text{enddo} \\
\text{do } i &= 1, m \\
A(j+1) &= A(j+1) + B(i) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

Jam the inner loops

– The inner loop has 1 load per iteration and 2 floating point operations per iteration
– We reuse the loaded value of \(B(i) \)
– The Loop Balance matches the machine balance
Unroll and Jam (cont)

Legality
– When is Unroll and Jam legal?

Disadvantages
– What limits the degree of unrolling?

Tiling

A non-unimodular transformation that ...
– groups iteration points into tiles that are executed atomically
– can improve spatial and temporal data locality
– can expose larger granularities of parallelism

Implementing tiling
– how can we specify tiling?
– when is tiling legal?
– how do we generate tiled code?

\[
\begin{align*}
\text{do } & ii = 1, 6, \text{ by } 2 \\
\text{do } & jj = 1, 5, \text{ by } 2 \\
\text{do } & i = ii, ii+2-1 \\
\text{do } & j = jj, \min(jj+2-1, 5) \\
A(i,j) & = \ldots
\end{align*}
\]
Specifying Tiling

Rectangular tiling
- tile size vector \((s_1, s_2, \ldots, s_d) \)
- tile offset, \((o_1, o_2, \ldots, o_d) \)

Possible Transformation Mappings
- creating a tile space
 \[
 \{[i, j] \rightarrow [ti, tj, i, j] \mid ti = \text{floor}(i - o_1)/s_1 \\
 \quad \land tj = \text{floor}(j - o_2)/s_2\}\]
- keeping tile iterators in original iteration space
 \[
 \{[i, j] \rightarrow [ii, jj, i, j] \mid ii = s_1 \text{floor}(i - o_1)/s_1 + o_1 \\
 \quad \land jj = s_2 \text{floor}(j - o_2)/s_2 + o_2\}\]

Legality of Tiling

A legal rectangular tiling
- each tile executed atomically
- no dependence cycles between tiles
- Check legality by verifying that transformed data dependences are lexicographically positive

Fully permutable loops
- rectangular tiling is legal on fully permutable loops
How can we apply loop interchange, skewing, and reversal to generate
– a loop that is legally tilable (ie. fully permutable)
– a loop that when tiled will result in improved data locality

Original Loop
\[
\begin{align*}
&\text{do } j = 1, 2n \text{ by } 2 \\
&\quad \text{do } i = 1, m \\
&\quad \quad A(j) = A(j) + B(i) \\
&\quad \text{enddo} \\
&\text{enddo}
\end{align*}
\]

Their heuristic for solving data locality optimization problem

Perform reuse analysis to determine innermost tile (ie. localized vector space)
– only consider elementary vectors as reuse vectors

For the localized vector space, break problem into all possible tiling combinations

Apply SRP algorithm in an attempt to make loops fully permutable
– (S)kew transformations, (R) reversal transformation, and (P)ermutation
– Definitely works when dependences are lexicographically positive distance vectors
– \(O(n^2d) \) where \(n \) is the loop nest depth and \(d \) is the number of dependence vectors
Code Generation for Tiling

Fixed-size Tiles
- Omega library
- Clooq
- for rectangular space and tiles, straightforward

Parameterized tile sizes
- Parameterized tiled loops for free, PLDI 2007
- TLOG - A Tiled Loop Generator, http://www.cs.colostate.edu/~ln/TLOG/

Overview of decoupled approach
- find polyhedron that may contain any loop origins
- generate code that traverses that polyhedron
- post process the code to start a tile origins and step by tile size
- generate loops over points in tile to stay within original iteration space and within tile

Unroll and Jam IS Tiling (followed by inner loop unrolling)

Original Loop
\[
\begin{align*}
\text{do } j &= 1, 2n \\
\text{do } i &= 1, m \\
A(j) &= A(j) + B(i) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

After Tiling
\[
\begin{align*}
\text{do } jj &= 1, 2n \text{ by 2} \\
\text{do } i &= 1, m \\
\text{do } j &= jj, jj+2-1 \\
A(j) &= A(j) + B(i) \\
\text{enddo} \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

After Unroll and Jam
\[
\begin{align*}
\text{do } jj &= 1, 2n \text{ by 2} \\
\text{do } i &= 1, m \\
\text{do } j &= jj, jj+2-1 \\
A(j) &= A(j) + B(i) \\
A(j+1) &= A(j+1) + B(i) \\
\text{enddo} \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]
Concepts

Unroll and Jam is the same as Tiling with the inner loop unrolled

Tiling can improve ...

– loop balance
– spatial locality
– data locality
– computation to communication ratio

Implementing tiling

– specification
– checking legality
– code generation

Next Time

Lecture

– Run-time reordering transformations

Suggested Exercises

– after array expansion of the scalar T, is it legal to tile the three loops in Figure 11.23? write the tiled code for a block size of your choice.