CS653 Static and Dynamic Program Analysis

Instructor: Michelle Strout
mstrout@cs.colostate.edu
USC 227
Office hours: 3-4 Tuesday, 2-3 Thursday

URL: http://www.cs.colostate.edu/~cs653

These notes are loosely based on Amer Diwan’s CSCI 7135 Notes

Plan for Today

Introductions

Announcements
– OpenAnalysis research group meeting: Monday 1-2, Monday 2-3, Friday 1-2, Friday 2-3

Course Goals and Outline

Administrivia
– You are responsible for what is on the syllabus, on the schedule, and sent out to the class mailing list

Paper Reviews
– reviews are due before class on the day the paper is being discussed

Projects
Course Goals

Understand two big picture problems
- program optimization
- security

In depth knowledge of program analysis ranging
- from entirely at compile-time
- to run-time
- to post run-time
- to barely any analysis at all.

How these program analyses are applied to program optimization and security

Approach
- read and critique recent and influential papers
- implement a program analysis idea

Other Important Course Goals

Research Exam Preparation
- paper reviewing skills will be critical for the research exam
- presenting the crucial points in a paper
- synthesizing ideas between papers
- suggesting future research questions

Thesis Project Preparation
- how to break projects into manageable pieces
- how to leverage existing research tools
- presenting research in a succinct fashion
Compile-time Program Analysis

Discover properties of programs by looking at its source

- local (a few lines of straight-line code)
- global or intraprocedural (full procedure)
- interprocedural (several procedures)
 - special case: whole program analysis

Example of Compile-time Program Analysis

![Diagram](image)

What are the possible values of y?

Does answering this question require local, global, or interprocedural analysis?
Run-time Program Analysis

Discovers properties of programs by examining its runs

Source → Instrument → Instrumented source → Link and run

Example of Run-time Program Analysis

What is the most common target of o.m()?
What can we do with that information?
Outline

Read papers that use a range of static and analysis techniques to solve the problems that arise in program optimization and program security

- data-flow analysis as a static analysis framework
- relationship between data-flow analysis and abstract interpretation
- applying data-flow analysis to security
- dealing with pointers
- other ways to improve analysis precision (context, flow, and path sensitivity)
- staged and dynamic analysis
- profiling to feed back into static analysis
- when data-flow analysis is not enough
- static and dynamic data dependence analysis
- don’t analyze, just generate code

Administrative Matters

Turn to your syllabus
Tips for Reading a Research Paper (by Tia Newhall)

Read the paper three times
- First read the abstract, introduction, related work, and conclusion
- Next read the entire paper writing down questions and vocabulary words you need to look up
- Finally re-read the paper critically, answer the paper review questions

Questions to answer in a paper review
- What problem did the paper address?
- Is it important/interesting? What was the context for the paper?
- What is the approach used to solve the problem?
- How does the paper support or otherwise justify the conclusions it reaches?
- What problems are explicitly or implicitly left as future research questions?

Selecting a Paper to Present

Read the abstract, introduction, and conclusion for all papers you are seriously considering

Consider selecting a paper related to your course project

Schedule around your deadlines in this course and other courses

Paper selection will be first-come-first-serve
- I will start posting assignments as soon as they are sent
- You must indicate which paper you would like to present by January 26
- There are 21 possible papers, don’t panic!
Project

Five deliverables
- proposed tool example with preliminary project proposal
- proposal and tool example
- verbal status report (15 minutes)
- intermediate report
- final report and elevator speech

Possible projects accessible from colostate.edu

Tool Example

C-breeze
- last semester wrote a walker that counted operations in the program

LLVM compiler infrastructure
- http://llvm.cs.uiuc.edu/docs/Projects.html, describes how to create a project that uses LLVM
- could count operations or memory references or if statements or ...

TAU: Tuning and Analysis Utilities
- http://www.cs.uoregon.edu/research/tau/home.php
- could profile one of your benchmarks from last semester

OpenAnalysis
- could count the different types of memory reference expressions
Possible Projects

http://www.cs.colostate.edu/~cs653/Project/possible-projects.html

Next Time

Reading
- “Quantifying Behavioral Differences Between C and C++ Programs” by Brad Calder, Dirk Grunwald, and Benjamin Zorn

Class
- Example paper presentation

Due
- Paper review for the Calder, Grunwald, and Zorn paper