Where Do We Place ϕ-Functions?

Basic Rule
- If two distinct (non-null) paths $x \rightarrow z$ and $y \rightarrow z$ converge at node z, and nodes x and y contain definitions of variable v, then a ϕ-function for v is inserted at z.

$$v_1 := \ldots \quad v := \phi(v_1, v_2) \quad \ldots v_3 \ldots$$

Approaches to Placing ϕ-Functions

Minimal
- As few as possible subject to the basic rule.

Briggs-Minimal
- Same as minimal, except v must be live across some edge of the CFG.

Pruned
- Same as minimal, except dead ϕ-functions are not inserted.

What’s the difference between Briggs Minimal and Pruned SSA?

Machinery for Placing ϕ-Functions

Recall Dominators
- $d \text{ dom } i$ if all paths from entry to node i include d.
- $d \text{ sdom } i$ if $d \text{ dom } i$ and $d \neq i$.

Dominance Frontiers
- The dominance frontier of a node d is the set of nodes that are “just barely” not dominated by d; i.e., the set of nodes n, such that
 - d dominates a predecessor p of n, and
 - d does not strictly dominate n.
- $DF(d) = \{ n \mid \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \not\text{ sdom } n \}$.

Notational Convenience
- $DF(S) = \bigcup_{s \in S} DF(s)$.
Dominance Frontier Example

\[DF(d) = \{ n \mid \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \not\text{ sdom } n \}\]

\[\text{Dom}(5) = \{5, 6, 7, 8\} \]

\[DF(5) = \{4, 5, 12, 13\} \]

Nodes in \text{Dom}(5)

What’s significant about the Dominance Frontier?
In SSA form, definitions must dominate uses

Dominance Frontier Example II

\[DF(d) = \{ n \mid \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \not\text{ sdom } n \}\]

\[\text{Dom}(5) = \{5, 6, 7, 8\} \]

\[DF(5) = \{4, 5, 13\} \]

Nodes in \text{Dom}(5)

In this new graph, node 4 is the first point of convergence between the entry and node 5, so do we need a \(\phi \) function at node 13?

SSA Exercise

\[DF(8) = \{10\} \]

\[DF(9) = \{10\} \]

\[DF(2) = \{6\} \]

\[DF(8,9) = \{10\} \]

\[DF(0) = \{6\} \]

\[DF(2,8,9,10) = \{6,10\} \]

Dominance Frontiers Revisited

Suppose that node 3 defines variable x

\[DF(3) = \{5\} \]

\[x \in \text{Def}(3) \]

Do we need to insert a \(\phi \) function for x anywhere else?

Yes. At node 6. Why?
Dominance Frontiers and SSA

Let
- \(DF_1(S) = DF(S) \)
- \(DF_{i+1}(S) = DF(S \cup DF_i(S)) \)

Iterated Dominance Frontier
- \(DF_{\infty}(S) \)

Theorem
- If \(S \) is the set of CFG nodes that define variable \(v \), then \(DF_{\infty}(S) \) is the set of nodes that require \(\phi \)-functions for \(v \)

Algorithm for Inserting \(\phi \)-Functions

for each variable \(v \)
WorkList \(\leftarrow \emptyset \)
EverOnWorkList \(\leftarrow \emptyset \)
AlreadyHasPhiFunc \(\leftarrow \emptyset \)

for each node \(n \) containing an assignment to \(v \)
WorkList \(\leftarrow \) WorkList \(\cup \) \(\{ n \} \)
EverOnWorkList \(\leftarrow \) WorkList

while WorkList \(\neq \emptyset \)
Remove some node \(n \) for WorkList
for each \(d \in DF(n) \)
if \(d \notin \text{AlreadyHasPhiFunc} \)
Insert a \(\phi \)-function for \(v \) at \(d \)
AlreadyHasPhiFunc \(\leftarrow \) AlreadyHasPhiFunc \(\cup \) \(\{ d \} \)
If \(d \notin \text{EverOnWorkList} \)
WorkList \(\leftarrow \) WorkList \(\cup \) \(\{ d \} \)
EverOnWorkList \(\leftarrow \) EverOnWorkList \(\cup \) \(\{ d \} \)

Put all defs of \(v \) on the worklist
Insert at most one \(\phi \) function per node
Process each node at most once

Variable Renaming

Basic idea
- When we see a variable on the LHS, create a new name for it
- When we see a variable on the RHS, use appropriate subscript

Easy for straightline code
\[
\begin{align*}
\text{x} &= \text{y} \\
\end{align*}
\]

Use a stack when there’s control flow
- For each use of \(x \), find the definition of \(x \) that dominates it

Dominance Tree Example

The dominance tree shows the dominance relation

\[
\text{CFG} \\
\text{Dominance Tree}
\]
Variable Renaming (cont)

Data Structures
- Stacks[v] ∀ v
 Holds the subscript of most recent definition of variable v, initially empty
- Counters[v] ∀ v
 Holds the current number of assignments to variable v; initially 0

Auxiliary Routine

procedure GenName(variable v)
 i := Counters[v]
 push i onto Stacks[v]
 Counters[v] := i + 1

Use the Dominance Tree to remember the most recent definition of each variable

Variable Renaming Algorithm

procedure Rename(block b)
 if b previously visited return
 for each φ-function p in b
 GenName(LHS(p)) and replace v with v_i, where i = Top(Stack[v])
 for each statement s in b (in order)
 for each variable v ∈ RHS(s)
 replace v by v_i, where i = Top(Stacks[v])
 for each variable v ∈ LHS(s)
 GenName(v) and replace v with v_i, where i = Top(Stack[v])
 for each s ∈ succ(b) (in CFG)
 j ← position in s’s φ-function corresponding to block b
 for each φ-function p in s
 replace the j-th operand of RHS(p) by v_i, where i = Top(Stack[v])
 for each s ∈ child(b) (in DT)
 Rename(s)
 for each t ∈ child(b) (in DT)
 if t is a φ-function or statement t in b
 for each variable v_i ∈ LHS(t)
 Pop(Stack[v])
 Unwind stack when done with this node

compilation

Transformation from SSA Form

Proposal
- Restore original variable names (i.e., drop subscripts)
- Delete all φ-functions

Complications
- What if versions get out of order?
 (simultaneously live ranges)

Alternative
- Perform dead code elimination (to prune φ-functions)
- Replace φ-functions with copies in predecessors
- Rely on register allocation coalescing to remove unnecessary copies