CS 370: OPERATING SYSTEMS
[INTRODUCTION]

Computer Science
Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2026

** Lecture slides created by: SHRIDEEP PALLICKARA



Topics covered in this lecture
N

1 Brief course Overview

01 Introduction and reminders about computers

CS370: Operating Systems L1.2
Dept. Of Computer Science, Colorado State University



Course Overview

All course materials will be accessible via the public-facing webpage

=> https://courses.cs.colostate.edu/cs370/ (will be populated this week)
NOTE: temporarily for this week, see instead https:/ /www.cs.colostate.edu/~cs370/Spring24/

Schedule (Lecture slide sets for each lecture)
Assignments
Syllabus
Grading policy
Grades will be posted on Canvas; assignment submissions will be via

Canvas

The course website, MS Teams Channel, and Canvas will all be updated
this week, expectedly by Thursday January 22 2026.

CS370: Operating Systems L1.3
Dept. Of Computer Science, Colorado State University


https://www.cs.colostate.edu/~cs370/Spring24/
https://www.cs.colostate.edu/~cs370/Spring24/

Pedagogical Objectives

Upon successful completion of this course students will be able to:
Explain basic operating system terminology
Explain processes and thread management

Distill core concepts in scheduling algorithms and develop tools to assess their
performance

Synthesize diverse concepts in memory management.

Contrast mechanisms for interprocess communications

Distill and build upon core concepts in process and task synchronization
Design resource management schemes that mitigate deadlocks

Explain file systems and storage architecture

Contrast virtualization and containers alongside identifying when one approach
outperforms the other

CS370: Operating Systems L1.4
Dept. Of Computer Science, Colorado State University



Topics Covered in CS370

Processes and Threads

Process Synchronization (plus Atomic Transactions)

CPU Scheduling

Deadlocks

UNIX I/O

Memory Management

File System interface and management. Unix file system. NTFS.
Storage Management including SSDs and Flash Memory

Virtualization and Containers, and modern safety mechanisms in OS

CS370: Operating Systems L1.5
Dept. Of Computer Science, Colorado State University



Course Textbook

Operating Systems Concepts, 9t/10t edition

Avi Silberschatz, Peter Galvin, and Greg Gagne Publisher - John

Wiley & Sons, Inc.
ISBN-13:978-1118063330.

CS370: Operating Systems L1.6
Dept. Of Computer Science, Colorado State University



Grading Policy

Assignments 45% [5, 5, 5, 10, 10, 10]
Quizzes 10%
Mid Term 20%
Final Exam 25%

o Letter grades will be based on the following standard breakpoints:

o0 >=90isan A, >=88isan A-, >=86isa B+, >=80isa B, >=7/8isa B-, >=76is a
C+,>=70isa C, >=60isa D, and <60 is an F.

o No cut higher than this, but may be cut lower (i.e., higher letter grade than displayed
above)

CS370: Operating Systems L1.7
Dept. Of Computer Science, Colorado State University



A Word About Me

Louis-Noel Pouchet, Associate Professor in Computer Science, joint appointment in
Electrical and Computer Engineering

Joined CSU in 2016

Teaching semester in SP26: CS370, CS453, CS553.

Specialty: compilers, high-performance computing, hardware/software co-design, distributed systems,...
Working also with AMD on correctness verification for programs (deadlock detection, etc.)

To reach me for any direct communication (not seen by TAs, just me): email directly
with subject line "[CS370] ...your subject...”

In case of emergency my cellphone is +1 614 859 5115

For all communications related to this class, but which may be addressed by our TA

team or I, we will use . This email is read by the
entire teaching team.

Note CS370 in Spring 2026 is nearly exactly the class from Pr. Shrideep Pallicakara,
I am only the instructor. He is carefully thanked for sharing all his material! ©

CS370: Operating Systems L1.8
Dept. Of Computer Science, Colorado State University


mailto:pouchet@colostate.edu
mailto:compsci_cs370@colostate.edu

OPERATING SYSTEMS



A modern computer is a complex system

Multiple processors

Main memory and Disks
Keyboard, Mouse and Displays
Network interfaces

1/O devices

CS370: Operating Systems L1.10
Dept. Of Computer Science, Colorado State University



Why do we need Operating Systems?

If every programmer had to understand how all these components
work?

Software development would be arduous

Managing all components and using them optimally is a challenge

CS370: Operating Systems L1.11
Dept. Of Computer Science, Colorado State University



Computers are equipped with a layer of software

Called the Operating System

Functionality:

Provide user programs with a better, simpler, cleaner model of the
computer

Manage resources efficiently

CS370: Operating Systems L1.12
Dept. Of Computer Science, Colorado State University



A common misconception about the OS

s it the program that users interact with?
Text based: Shell

Graphical User Interfaces (GUI) that have icons etc.

The look-and-feel if you will

This is not actually part of the OS
But it does use the OS to get its work done

CS370: Operating Systems L1.13
Dept. Of Computer Science, Colorado State University



Where the operating system fits in

Web browser

User mode —

Kernel mode __

E-mail reader

Music Player

~

D —

User interface Program

= Software

Operating System

Bare Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.14



Where the operating system fits in

The OS runs on bare hardware in kernel mode

Complete access to all hardware

Can execute any instruction that the machine is capable of executing

Provides the base for all software
Rest of the software runs in user-mode

Only a subset of machine instructions is available

CS370: Operating Systems L1.15
Dept. Of Computer Science, Colorado State University



The OS controls hardware and coordinates
its use among various programs

wekiolies

Compiler Assembler Text editor Database Syst
System and Application Programs

Operating System
Computer
Hardware

CS370: Operating Systems L1.16
Dept. Of Computer Science, Colorado State University




Kernel and user modes

Everything running in kernel mode is part of the OS

But some programs running outside it are part of it or at least closely
associated with it

CS370: Operating Systems L1.17
Dept. Of Computer Science, Colorado State University



Operating systems tend to be huge, complex and
long-lived

Source code of an OS like Linux or Windows?

Order of > 5 million lines of code (for kernel)

50 lines page, 1000 pages/volume = 100 volumes

Application programs such as GU|, libraries and application software?
10-20 times that

CS370: Operating Systems L1.18
Dept. Of Computer Science, Colorado State University



Why do operating systems live for a long time?

Hard to write and folks are loath to throw it out

Typically evolve over long periods of time
Windows 95/98 /Me is one OS
Windows NT/2000/XP /Vista/7 /8 is another
System V, Solaris, BSD derived from original UNIX

Linux is a fresh code base

Closely modeled on UNIX and highly compatible with it

Apple OS X based on XNU (X is not Unix) which is based on the Mach
microkernel and BSD’s POSIX API

CS370: Operating Systems L1.19
Dept. Of Computer Science, Colorado State University



An operating system performs two unrelated
functions

Providing application programmers a clean abstract set of resources

Instead of messy hardware ones

Managing hardware resources

CS370: Operating Systems L1.20
Dept. Of Computer Science, Colorado State University



The OS as an extended machine

The architecture of a computer includes

Instruction set, memory organization, | /O, and bus structure

The architecture of most computers at the machine language level

Primitive and awkward to program especially for | /O

CS370: Operating Systems L1.21
Dept. Of Computer Science, Colorado State University



Lets look at an example of floppy disk |/O done
using NEC PD765

The PD765 has 16 commands

For reading and write data, moving the disk arm, formatting tracks, etc.

Specified by loading 1-9 bytes into the device register

Most basic commands are for read and write
13 parameters packed into 9 bytes

Address of disk block, number of sectors/track, inter-sector gap spacing etc.

CS370: Operating Systems L1.22
Dept. Of Computer Science, Colorado State University



But that’s not the end of it ...

When the operation is completed

Controller returns 23 status and error fields packed into 7 bytes

You must also check the status of the motor
If it is off¢ Turn it on before reading or writing

Don’t leave the motor on for too long

Floppy disk will wear out
TRADEOFF: Long start-up delay Vs wearing out disk

CS370: Operating Systems L1.23
Dept. Of Computer Science, Colorado State University



And what about Al accelerators?e

Instructions for 32-bit floating-point arithmetic

Twa 32-bit FP arithmetic instructions are used to discuss the funclionality of MMA. The twa
instructions that are used to parform a single precision matrix multiplication operation are:
xvfi2ger and xvfiZgerpp.

The diffarance betweean the ger instruction and the gerpp instruction is as follows:

» Tha gerpp instruction accumulares the rasulls in the accumulator register. This instruction
requiras the accumulator 1o already have a defined contant.

» Tha ger instruchon averwrifes tha results in the accumulator ragister. This nstruction
dafines the contant of an accumulatar, similar o the xzetace and xxsetaccz instructions.

xvfiZgerpp AT, XA, XEB, whare:

» AT refers to any of the eight accumulator registers (ACCO-ACCT).
» XA and XB refer to VSRS,

For the xvf32gerpp AT,XA,XB instruction, assume AT=1, XA= 32, and XB=33. The VSR 32 has
four 32-bit single precision values and VSR 33 has four 32-bit single pracision values. Each
value in VSR 32 is multiplied with each value in VSR 33, generaling a 4x4 array of 32-bit
resulls (a total of 512 bits of output). The output is accumulated with the content of AGC1, as
shown in Figure 2-2.

Source:

| T 11k I s |

l
>

1k

XA
128k
'

512k

L b

Figure 2-2  MMA xvi32gempp instruction aparation

Matrix-Multiply Assist Best Practices Guide

CS370: Operating Systems L1.24
Dept. Of Computer Science, Colorado State University



https://www.redbooks.ibm.com/redpapers/pdfs/redp5612.pdf

Of course the average programmer does not want
to have any of this

What they would like is a simple, high-level abstraction to deal with

For a disk this would mean a collection of named files

Operations include open, read, write, close, etc.
BUT NOT

Whether the recording should use frequency modulation

The state of the motor

CS370: Operating Systems L1.25
Dept. Of Computer Science, Colorado State University



Why do processors, disks, etc. present difficult, awkward,

idiosyncratic interfaces ¢

Backward compatibility with older hardware

Desire to save money

Sometimes hardware designers don’t realize (or care) how much

trouble they causel

CS370: Operating Systems L1.26
Dept. Of Computer Science, Colorado State University



Why abstractions are important

Abstraction is the key to managing complexity

Good abstractions turn a nearly impossible task into two manageable
ones

(1) Defining and implementing abstractions

(2) Using abstractions to solve problem

Example
File

CS370: Operating Systems L1.27
Dept. Of Computer Science, Colorado State University



Operating systems turn ugly hardware into beautiful

interfaces
—

Application Programs

.E @€ High-level interface

Operating System

Low-level interface

Hardware

CS370: Operating Systems L1.28
Dept. Of Computer Science, Colorado State University



Two views of the operating system

Top-down view

Providing abstractions to the application programs

Bottom-up view

Manage all pieces of a complex system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.29



The operating system as a resource manager

Provide orderly and controlled allocation of resources to programs
competing for them

Processors, memories, and /O devices

CS370: Operating Systems L1.30
Dept. Of Computer Science, Colorado State University



Operating System Roles:
User View

PC Users: Ease of use
Mainframe: Maximize resource utilization
Workstations: Compromise between usability and resource utilization.

Handheld devices: Ease of use + performance per unit of battery life

CS370: Operating Systems L1.31

Dept. Of Computer Science, Colorado State University



The System view of the OS is that of a Resource
Allocator

An OS may receive numerous & conflicting requests for resources

Prevent errors and improper use
Resources are scarce and expensive

The OS allocates resources to specific programs and users
The allocation must be efficient and fair

Must increase overall system throughput

CS370: Operating Systems L1.32
Dept. Of Computer Science, Colorado State University



Defining Operating Systems

Solves the problem of creating a usable computing system

Makes solving problems easier
Control, allocate and mediate access to resources

It is the one program that is running all the time: kernel

CS370: Operating Systems L1.33
Dept. Of Computer Science, Colorado State University



A (VERY) BRIEF HISTORY OF OPERATING
SYSTEMS



The first mechanical computer was designed by Charles

Babbage (1792-1871)

Spent most of his life and fortune trying to build the analytical engine

Never got it working properly
Purely mechanical

Technology of the day could not produce wheels, cogs, gears to the required
precision

Did not have an operating system ;-)

CS370: Operating Systems L1.35
Dept. Of Computer Science, Colorado State University



Babbage realized he would need software for his
analytical engine

Hired Ada Lovelace as the worlds first programmer

Daughter of British poet Lord Byron

The programming language Ada® is named after her

CS370: Operating Systems L1.36
Dept. Of Computer Science, Colorado State University



History... from CS453 on Compiler Construction

.
A bit of (modern) history...

It all started with punch cards

As early as 19t century

Picture: IBM machine, 1936

At start: storage, basic processing
Programming was hard!

A good quote (IBM Manual, 1925):

All parts should go together without forcing. You must remember that

the parts you are reassembling were disassembled by you. Therefore,

if you can’t get them together again, there must be a reason. By all 1 37
means, do not use a hammer.




The First Generation (1945-55) Vacuum Tubes

First fully functioning digital computer built at lowa State University
Prof. John Atanasoff and grad student Clifford Berry

All programming in absolute machine language

Also by wiring up electrical circuits

Connect 1000s of cables to plugboards to control machine’s basic functions

Operating Systems were unheard of

Straightforward numerical calculations

Produce tables of sines, cosines, logarithms

CS370: Operating Systems L1.38
Dept. Of Computer Science, Colorado State University



The Second Generation (1955-1965):
Transistors and Batch Systems

Separation between designers, builders, operators, programmers, and
maintenance

Machines were called mainframes

Write a program on paper, then punch it on cards
Give card deck to operator and go drink coffee

Operator gives output to programmer

CS370: Operating Systems L1.39
Dept. Of Computer Science, Colorado State University



The Third Generation (1965-1980)
ICs and Multiprogramming

Managing different product lines was expensive for manufacturers

Customers would start with a small machine, and then outgrow it

IBM introduced the Systems/360

Series of software-compatible machines

All machines had the same instruction set

Programs written for one machine could run on all machines

CS370: Operating Systems L1.40
Dept. Of Computer Science, Colorado State University



The Fourth Generation (1980-Present)
Personal Computers

Large Scale Integration circuits (LSI)

Thousands of transistors on a square centimeter of silicon

197 4: Intel came out with the 8080
General purpose 8-bit CPU

Early 1980s IBM designed the IBM PC
Looked for an OS to run on the PC

Microsoft purchased Disk Operating System and went back to IBM with MS-
DOS

CS370: Operating Systems L1.41
Dept. Of Computer Science, Colorado State University



COMPONENTS OF A COMPUTER



Components of a simple personal computer
—

{Mouse, Keyboard,
{Disk 1, Disk 2} Printer} {Monitor}

Bus

Memory '

CS370: Operating Systems L1.43
Dept. Of Computer Science, Colorado State University



Processors

Brain of the computer

Each CPU has a specific set of instructions that it can execute

Pentium cannot execute SPARC and vice versa

CS370: Operating Systems L1.44
Dept. Of Computer Science, Colorado State University



Rationale for registers inside the CPU

Accessing memory to get instruction or data

Often much longer than executing the instruction

Registers hold any data processed by the CPU:
Key variables

Temporary results

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.45



What the instruction set looks like

Load a word from memory into register

And, from register into memory

Combine two operands from register, memory, or both into a result

E.g. add two words and store result in a register or in memory
L6

vmovss  (%rax), Yoxmm1

addq $4, %rax

vimadd231ss (%rdx), Yoxmm1, %xmmO
addqg Y%rbx, %rdx

cmpq Yorax, Yorsi

jne L6

vmovss  %xmmO, (%rdi,%r9,4)

CS370: Operating Systems L1.46
Dept. Of Computer Science, Colorado State University



Besides the registers to hold variable and temporary results there
are special registers

Program Counter

Contains the memory address of the program instructions

Stack pointer

Points to the top of the current stack in memory, to help manage local
memory

Program Status Word
Stores condition code bits and other control code bits

Plays an important role in system calls and | /O

CS370: Operating Systems L1.47
Dept. Of Computer Science, Colorado State University



MEMORY



Memory

Ideally the memory should be

Extremely fast: Faster than executing an instruction

CPU should not be held up by the memory
Abundantly large
Dirt cheap

No current technology satisfies all these goals: they are contradictory!

It is all a matter of trade-off and calibration based on typical expected use
of the CPU/memory/machine

CS370: Operating Systems L1.49
Dept. Of Computer Science, Colorado State University



Storage system hierarchy
N

Z

5
o

m (]

%

Electronic Disk Q.
QQ
‘©

Magnetic Disk '

Optical Disk '

Magnetic Tapes '

CS370: Operating Systems L1.50
Dept. Of Computer Science, Colorado State University



Memory Hierarchy: Registers internal to the CPU

Made of same material as the CPU
Just as fast as the CPU

Storage capacity is typically very small: a handful / a few tens of
virtual registers

May have more physical registers

Programs explicitly address registers in software

Compilers map the (possibly infinite) set of variables in a program to a
finite set of physical memory locations (registers), and deal with
backup /restore code as needed

CS370: Operating Systems L1.51
Dept. Of Computer Science, Colorado State University



Memory hierarchy: Cache memory

Mostly controlled by hardware

But can be controlled by software

Trade off: slower speed than registers, but more
capacity
Think about a temporary storage for “more” registers but

at a “higher” cost of access (restoring a value from cache to
its register)

Typically pre-populated with the next memory location
to be accessed: data pre-fetching (hardware or soft.)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.52



When a program needs to read a memory word

Start at L1: cache hardware checks if the needed line is in the cache

If it is, that’s a cache hit

Request satisfied from cache in about 1-10 clock cycles

No memory access needed

If needed line is not present in cache
Cache miss in L1, which translates into a read in L2. Repeat

If no cache holds the data, read to memory: VERY long latency, 1000 of cycles
possible

Do not believe the sequential bandwidth numbers advertised as true in practical scenarios!

CS370: Operating Systems

L1.53
Dept. Of Computer Science, Colorado State University



Caching is a powerful concept used elsewhere too.

Let’s see when ...

(1) Large resource can be divided into pieces

(2) Some pieces used more heavily than others

OS caching examples:

Pieces of heavily used files in main memory
Reduce disk accesses

Conversion of file names to disk addresses
Addresses of Web pages (URLs) as hosts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.54



Main Memory

Usually called RAM (Random Access Memory)
Cache misses go to the main memory

Volatile

Contents lost when power is turned off

Memory size is of the order of several GB in most modern desktops

CS370: Operating Systems L1.56
Dept. Of Computer Science, Colorado State University



Loading and storing of memory
addresses is the precursor to processing

load () moves word from main memory to an internal register
store () moves content from register o main memory

CPU automatically loads instructions from main memory

CS370: Operating Systems L1.57
Dept. Of Computer Science, Colorado State University



The instruction execution cycle

Instruction fetched from memory and stored in instruction register

Instruction is decoded, and operands fetched from memory and stored
in some register

Instruction on operands is executed next

Result stored back in memory

CS370: Operating Systems L1.58
Dept. Of Computer Science, Colorado State University



Computers run most of their programs from
(rewriteable) main memory

Typically implemented in a technology called DRAM (dynamic random
access memory)

ldeal Scenario: Programs and data reside permanently in main
memory. BUT ...

Space is limited

Main memory is volatile storage

CS370: Operating Systems L1.59
Dept. Of Computer Science, Colorado State University



The contents of this slide-set are based on the
following references

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4" Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 1]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 1]

CS370: Operating Systems L1.60
Dept. Of Computer Science, Colorado State University



	Slide 1: CS 370: Operating Systems  [Introduction]
	Slide 2: Topics covered in this lecture
	Slide 3: Course Overview
	Slide 4: Pedagogical Objectives
	Slide 5: Topics Covered in CS370
	Slide 6: Course Textbook
	Slide 7: Grading Policy
	Slide 8: A Word About Me
	Slide 9: Operating Systems
	Slide 10: A modern computer is a complex system
	Slide 11: Why do we need Operating Systems?
	Slide 12: Computers are equipped with a layer of software
	Slide 13: A common misconception about the OS
	Slide 14: Where the operating system fits in
	Slide 15: Where the operating system fits in
	Slide 16: The OS controls hardware and coordinates its use among various programs
	Slide 17: Kernel and user modes
	Slide 18: Operating systems tend to be huge, complex and long-lived
	Slide 19: Why do operating systems live for a long time?
	Slide 20: An operating system performs two unrelated functions
	Slide 21: The OS as an extended machine
	Slide 22: Lets look at an example of floppy disk I/O done using NEC PD765
	Slide 23: But that’s not the end of it …
	Slide 24: And what about AI accelerators?
	Slide 25: Of course the average programmer does not want to have any of this
	Slide 26: Why do processors, disks, etc. present difficult, awkward, idiosyncratic  interfaces ?
	Slide 27: Why abstractions are important
	Slide 28: Operating systems turn ugly hardware into beautiful interfaces
	Slide 29: Two views of the operating system
	Slide 30: The operating system as a resource manager
	Slide 31: Operating System Roles: User View
	Slide 32: The System view of the OS is that of a Resource Allocator
	Slide 33: Defining Operating  Systems
	Slide 34: A (very) Brief History of Operating Systems
	Slide 35: The first mechanical computer was designed by Charles Babbage (1792-1871)
	Slide 36: Babbage realized he would need software for his analytical engine
	Slide 37: History… from CS453 on Compiler Construction
	Slide 38: The First Generation (1945-55) Vacuum Tubes
	Slide 39: The Second Generation (1955-1965): Transistors and Batch Systems
	Slide 40: The Third Generation (1965-1980) ICs and Multiprogramming 
	Slide 41: The Fourth Generation (1980-Present) Personal Computers
	Slide 42: Components of a computer
	Slide 43: Components of a simple personal computer
	Slide 44: Processors
	Slide 45: Rationale for registers inside the CPU
	Slide 46: What the instruction set looks like
	Slide 47: Besides the registers to hold variable and temporary results there are special registers
	Slide 48: Memory
	Slide 49: Memory
	Slide 50: Storage system hierarchy
	Slide 51: Memory Hierarchy: Registers internal to the CPU
	Slide 52: Memory hierarchy: Cache memory
	Slide 53: When a program needs to read a memory word
	Slide 54: Caching is a powerful concept used elsewhere too. Let’s see when …
	Slide 56: Main Memory
	Slide 57: Loading and storing of memory addresses is the precursor to processing
	Slide 58: The instruction execution cycle
	Slide 59: Computers run most of their programs from (rewriteable) main memory
	Slide 60: The contents of this slide-set are based on the following references

