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Course Overview

 All course materials will be accessible via the public-facing webpage 

https://courses.cs.colostate.edu/cs370/
Activities (Lecture slide sets for each lecture) 

 Assignments

 Syllabus

 Grading policy 

 Grades will be posted on Canvas; assignment submissions will be via Canvas 

 The course website is on, MS Teams Channel TBD, and Canvas is online
 Well, the MS Teams channels will be finalized only later this week…! Ditto for links to assignments on the course page

 Use compsci_cs370@colostate.edu for email communications: it reaches all 

TAs and Pouchet

https://courses.cs.colostate.edu/cs370/
mailto:compsci_cs370@colostate.edu


CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.3

Topics covered in this lecture

 Secondary storage

 Relative speeds of the memory hierarchy

 Multiprogramming and time sharing

 Programs and processes

 Program constructs
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Reminder: Computer Organization

Grabbed from arstechnica.com
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Secondary storage is needed to hold large 

quantities of data permanently

 Programs use the disk as the source and destination of processing

 Seek time 7 ms

 SPIN: 7200 – 15000 RPM

 Transfer rate

 Disk-to-buffer: 70 MB/sec (SATA)

 Buffer-to-Computer: 300 MB/sec 

 Mean time between failures 

 600,000 hours

 1 TB capacity for less than $100
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Improvements in hard disk capacity

 1980 - 5 MB

 1991 - 100 MB

 1995 - 2 GB

 1997 - 10 GB
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Improvements in hard disk capacity

 2002 - 128 GB addressing space barrier [28 bits]

 Old IDE/ATA interface: 28-bit addressing

 228 x 512 = 228x 29 = 237 = 128 GB = 137,438,953,472 bytes

 2003 – Serial ATA introduced 

 2005 - 500 GB hard drives 

 2008 - 1 TB hard drives 
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Characteristics of peripheral devices & their speed 

relative to the CPU

Item time Scaled time in human terms 

(2 billion times slower)

Processor cycle

Cache access

Memory access

Context switch

Disk access

Quantum

0.5 ns (2 GHz) 1 second

1 ns (1 GHz) 2 seconds

70 ns 140 seconds

5,000 ns (5 μs) 167 minutes

7,000,000 ns (7 ms) 162 days

100,000,000 ns (100 ms) 6.3 years
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Mechanical nature of disks limits their performance

 Disk access times have not decreased exponentially.

 Processor speeds are growing exponentially

 Disparity between processor and disk access times continues to grow.

 1:14,000,000



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

RELATIVE SPEEDS OF THE MEMORY 

HIERARCHY

L2.10



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.11

Since caches have limited size, cache management is 

critical

Level 1 2 3 4

Name registers cache Main memory Disk Storage

Typical Size < 1 KB < 16 MB < 64 GB > 100 GB

Implementation 

Technology

Custom 

memory, 

CMOS

On/off chip 

CMOS SRAM

CMOS DRAM Magnetic disk

Access times 0.25 ns 0.5-25 ns 80-250 ns > 5 ms

Bandwidth 

(MB/sec)

20,000 – 

100,000

5000-10,000 1000-5000 80-300

Managed by compiler hardware OS OS

Backed by cache Main memory Disk CD/Tape
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A large portion of the OS code is dedicated for 

managing I/O

 A typical system comprises CPUs and multiple device controllers 

connected through a bus

 High end systems use switch based architecture

 Components talk to each other concurrently

 No competition for cycles on the bus
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Device controllers and drivers

 A device controller is responsible for a specific type of device.

 More than 1 device may be attached

 There is a device driver for each controller
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Device controllers move data between its 

local buffer storage & peripheral devices

 Device driver loads appropriate registers in the controller

 Controller examines contents to determine action to take

 Controller transfers data from device to its local buffer

 Once transfer is complete, controller informs driver via an 

interrupt

 Device driver then returns control to the OS
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Direct memory access is much faster than interrupt 

driven I/O

 Controller sets up buffers, pointers, and counters for IO 

device

 Transfer entire block of data directly to (or from) its 

own buffer storage to main memory

 No CPU intervention needed

 Only one interrupt per block

 As opposed to interrupts-per-byte for low speed devices 
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A simple bus-based structure

CPU
Graphics

AdapterDisk Controller
USB 

Controller

Memory

{Disk 1, Disk 2}

{Mouse, Keyboard, 

Printer} {Monitor}

Bus
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Limitations of the bus structure from the earlier slide

 As processors and memories got faster

 Ability of a single bus to handle all traffic strained considerably

 Result?

 Additional buses were added

 For faster I/O devices and CPU-memory traffic
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What a modern bus architecture looks like

Level 2 
Cache

CPU
PCI 

Bridge
Main 

Memory

SCSI USB
ISA 

Bridge

IDE 
Disk Graphics 

Adaptor

Cache 

bus
Local 

bus Memory bus

PCI Bus

ISA Bus

Modem
Sound 
Card

Printer

IDE 

Bus
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There are two main BUS standards

 Original IBM PC ISA (Industry Standard Architecture)

 PCI (Peripheral Component Interconnect)

 From Intel
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The IBM PC ISA bus

 Runs at 8.33 MHz

 Transfers 2 bytes at once

 Maximum speed = 16.67 MB/sec

 Included for backward compatibility

 Older and slower I/O cards
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The PCI bus

 Can run at 66 MHz 

 Transfer 8 bytes at once

 Data transfer rate: 528 MB/sec

 Most high-speed I/O devices use PCI

 Newer computers have an updated version of PCI

 PCI Express
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Other specialized buses:

IDE (Integrated Drive Electronics) bus 

 For attaching peripheral devices

 CD-ROMs and Disks 

 Grew out of the disk controller interface



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.25

Other specialized buses:

USB (Universal Serial Bus)

 Attach slow I/O devices to the computer

 Keyboard, mouse etc

 Uses a small 4-wire connector

 Two supply electrical power to the USB devices

 Centralized bus

 Root device polls I/O devices every 1 millisecond

◼ Check if they have any traffic
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Some more information about USB

 All USB devices share a single USB device driver

 No need to install a driver for each device

 Can be added to computer without need to reboot

 USB 1.0 has a transfer rate of 1.5 MB/sec

 USB 2.0 goes up to 60 MB/sec

 USB 3.0 

 Specification ready on 17 November 2008

 Theoretical signaling rate: 600 MB/sec (4.8 Gbps)

 USB 3.1: Jan 2013 will go to 10 Gbps

◼ On par with Thunderbolt (developed by Apple and Intel in 2011) 
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USB: Evolution

 https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html

https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
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Other buses

 SCSI (Small Computer System Interface)

 High performance bus

 For devices that need high bandwidth

◼ Fast disks, scanners

 Up to 320 MB/sec

 IEEE 1394

 Sometimes called FireWire (used by Apple)

 Transfer speeds of up to 100 MB/sec

◼ Camcorders and similar multimedia devices

 No need for a central controller (unlike USB) 
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In this setting the OS must know which devices are connected & 

how to configure them

 Led Intel and Microsoft to design plug-and-play

 Similar concept had been implemented in the Mac
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How things were before plug-and-play

 Each I/O card had a fixed interrupt level

 Fixed addresses for its I/O registers

Device Interrupt/I/O addresses

Keyboards Interrupt 1, 

I/O addresses: 0x60-0x64

Floppy disk controller Interrupt 6, 

I/O addresses: 0x3F0-0x3F7

Printer Interrupt 7, 

I/O addresses: 0x378-0x37A
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How things were before plug-and-play

 What if someone bought a sound card and a 
modem which happened to use interrupt 4?

 Conflict

 Would not work together

 Solution:

 Use DIP (dual in-line package) switches or jumpers on 
every I/O card

 Ask user to select interrupt level and I/O device 
addresses for the device

 Tedious!
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How does Plug-and-play work?

① Automatically collect information about devices

② Centrally assign interrupt levels + I/O addresses

③ Tell each card what its numbers are
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Single processor systems have 1 CPU that can 

execute general-purpose instructions

 The system may have special purpose processors

 Incapable of running user processes

 Limited instruction set

 Disk controller micro-processor 

 Implements disk queue and scheduling algorithms

 Keyboard microprocessors

 Convert keystrokes into CPU-bound codes
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There are two approaches to improving 

performance

 Determine component bottlenecks

 Replicate

 Improve
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To replicate or improve?  

“If  one ox could not do the job, they [pioneers] did not grow a bigger ox, 

but used two oxen.”

-- Admiral Grace Murray Hopper

Computer Software pioneer

“If  you were plowing a field, which would you rather use? Two strong oxen 

or 1024 chickens?”

-- Seymour Cray

Computer Hardware pioneer 
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Multiprocessor systems have 2-or-more processors in 

close communications

 The processors share the bus, and may share clock, memory and 

peripheral devices

 Advantages:

 Increased throughput

 Reliability
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Multiprocessor systems fall in two categories based 

on control

 Asymmetric multiprocessing: 

 Controller processor manages the system

 Workers rely on controller for instructions

 Symmetric multiprocessing

 Processors are peers and perform all OS tasks

 Have own set of registers and local cache

◼ Share physical memory

 Supported by virtually all modern OS 
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Trend: going multi-core for CPUs 

 Driven by power / physics

 Problem: parallelism in

the application? 

 We merely see 16-core

CPUs as HEDT in 2024

Grabbed from DoE Scidac
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Multiprogramming organizes jobs so that 

the CPU always has one to execute

 A single program (generally) cannot keep CPU & I/O devices busy at 

all times

 A user frequently runs multiple programs

 When a job needs to wait, the CPU switches to another job.

 Utilizes resources (cpu, memory, peripheral devices) effectively.
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Time sharing is a logical extension of the 

multiprogramming model

 CPU switches between jobs frequently, users can 

interact with programs

 Time shared OS allows many users to use computer 

simultaneously

 Each action in a time shared OS tends to be short

 CPU time needed for each user is small
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Grocery checkout : Several checkout counters 

(processes) & 1 checker (CPU)

 Multiprogramming

 Checker checks one item (instruction) at a time

 Continue checking till price check

 During price check move to another counter

 Time sharing

 Checker starts a 10-second timer 

 Process items for maximum of 10 seconds

◼ Move to another customer even if there is NO price check
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Multiprogramming requires several jobs 

to be held simultaneously in memory

 Job scheduling: Decision about which of the ready jobs need to 

brought into memory

 CPU scheduling: Deciding which job needs to be run

 Swapping: The shuffling of processes in and out of memory to the disk
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Programs and processes: Process is a program in 

execution.

 Programs are passive; processes are active

 Processes need resources to accomplish task

 Single-threaded processes have one program counter 

pointing to next instruction to execute

 Multithreaded processes have multiple program 

counters

 One for each thread
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Some terms related to processes

 Context switch time: Time to switch from executing one process to 

another

 Quantum: Amount of CPU time allocated to a process before another 

process can run
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OS process management activities

 Schedule processes and threads on CPUs

 Create and delete processes

 Suspend and resume

 Mechanisms for process synchronization

 Mechanisms for process communications
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System Calls

 Request to the OS for service

 Causes normal CPU processing to be interrupted

 Control to be given to the OS  
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System calls provide an interface to OS services

 Runtime support for most languages provide a system call interface.

 API hides details of the OS interface

 Runtime library manages the invocation

 Passing parameters to the OS

 Registers

 Block, or table, in memory

 Etc.



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.52

Types of system calls

 Process control

 File manipulation

 Device manipulation

 Information maintenance

 Communications

 Protection
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Mode bit allows us to distinguish between task 

executed on behalf of OS/user

 Mode bit: kernel (0) and user (1)

 Designate (potentially harmful) machine instructions as privileged 

instructions.

 Hardware enforces kernel mode executions
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Mode bit 

 MS-DOS/Intel 8088 had no mode bit 

 No dual-mode

 A program can wipe out OS by writing over it

 Most modern OS take advantage of dual mode and provide greater 

protection for OS.  
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Main memory is generally the only large 

storage device the CPU deals with

 To execute a program, it must be mapped to absolute addresses and 

loaded into memory

 Execution involves accesses to instructions and data from memory

 By generating absolute addresses

 When program terminates, memory space is reclaimed
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Virtual memory allows processes not completely 

memory resident to execute

 Enables us to run programs that are larger than the actual physical 

memory

 Separates logical memory as viewed by user from physical memory

 Frees programmers from memory storage limitations



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

PROGRAM CONSTRUCTS

L2.59



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.60

Important Program Constructs

 Communication, Concurrency & Asynchronous operation

 Challenges & Implications

 Improper handling can lead to failures for no apparent 

reason

 Run for weeks or months

 Avoid resource leaks 

 Cope with outrageously malicious input

 Recover from errors
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Program Construct: 

Asynchronous operation

 Events happen at unpredictable times AND in 

unpredictable order.

 Interrupts from peripheral devices

 For e.g. keystrokes and printer data

 To be correct, a program must work will all possible 

timings

 Timing errors are very hard to repeat
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Program Construct: 

Concurrency

 Sharing resources in the same time frame

 Interleaved execution

 Major task of modern OS is concurrency control

 Bugs are hard to reproduce, and produce unexpected side effects
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Concurrency occurs at the hardware level 

because devices operate at the same time

 Interrupt: Electrical signal generated by a peripheral device to set 

hardware flag on CPU

 Interrupt detection is part of instruction cycle

 If interrupt detected

 Save current value of program counter

 Load new value that is address of interrupt service routine or interrupt 

handler: device drivers

◼ Drivers use signals (software) to notify processes
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Signal is the software notification of an event

 Often a response of the OS to an interrupt 

 OS uses signals to notify processes of completed 

I/O operations or errors

 Signal generated when event that causes signal occurs

 For example: keystroke and Ctrl-C

 A process catches a signal by executing handlers for the signal
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Concurrency constructs: I/O operations

 Coordinate resources so that CPU is not idle

 Blocking I/O blocks the progress of a process

 Asynchronous I/O (dedicated) threads circumvent this problem

 Ex: Application monitors 2 network channels

 If application is blocked waiting for input from one source, it cannot respond 

to input on 2nd channel
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Concurrency constructs: Processes & threads 

 User can create multiple processes; fork() in UNIX

 Inter process communications

 Common ancestor: pipes

 No common ancestor: signals, semaphores, shared address spaces, or 

messages

 Multiple threads within process = concurrency
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The contents of this slide-set are based on the 

following references

 Andrew S Tanenbaum. Modern Operating Systems. 4th  Edition, 2014. Prentice Hall. 

ISBN: 013359162X/ 978-0133591620. [Chapter 1]

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 1, 2]

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 

ISBN-13: 978-0-13-042411-2. [Chapter 1]
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