
CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS  

[INTRODUCTION]

Computer Science

Colorado State University

L2.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.2

Course Overview

 All course materials will be accessible via the public-facing webpage 

https://courses.cs.colostate.edu/cs370/
Activities (Lecture slide sets for each lecture) 

 Assignments

 Syllabus

 Grading policy 

 Grades will be posted on Canvas; assignment submissions will be via Canvas 

 The course website is on, MS Teams Channel TBD, and Canvas is online
 Well, the MS Teams channels will be finalized only later this week…! Ditto for links to assignments on the course page

 Use compsci_cs370@colostate.edu for email communications: it reaches all 

TAs and Pouchet

https://courses.cs.colostate.edu/cs370/
mailto:compsci_cs370@colostate.edu


CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.3

Topics covered in this lecture

 Secondary storage

 Relative speeds of the memory hierarchy

 Multiprogramming and time sharing

 Programs and processes

 Program constructs



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.4

Reminder: Computer Organization

Grabbed from arstechnica.com



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.5

Secondary storage is needed to hold large 

quantities of data permanently

 Programs use the disk as the source and destination of processing

 Seek time 7 ms

 SPIN: 7200 – 15000 RPM

 Transfer rate

 Disk-to-buffer: 70 MB/sec (SATA)

 Buffer-to-Computer: 300 MB/sec 

 Mean time between failures 

 600,000 hours

 1 TB capacity for less than $100



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.6

Improvements in hard disk capacity

 1980 - 5 MB

 1991 - 100 MB

 1995 - 2 GB

 1997 - 10 GB



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.7

Improvements in hard disk capacity

 2002 - 128 GB addressing space barrier [28 bits]

 Old IDE/ATA interface: 28-bit addressing

 228 x 512 = 228x 29 = 237 = 128 GB = 137,438,953,472 bytes

 2003 – Serial ATA introduced 

 2005 - 500 GB hard drives 

 2008 - 1 TB hard drives 



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.8

Characteristics of peripheral devices & their speed 

relative to the CPU

Item time Scaled time in human terms 

(2 billion times slower)

Processor cycle

Cache access

Memory access

Context switch

Disk access

Quantum

0.5 ns (2 GHz) 1 second

1 ns (1 GHz) 2 seconds

70 ns 140 seconds

5,000 ns (5 μs) 167 minutes

7,000,000 ns (7 ms) 162 days

100,000,000 ns (100 ms) 6.3 years



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.9

Mechanical nature of disks limits their performance

 Disk access times have not decreased exponentially.

 Processor speeds are growing exponentially

 Disparity between processor and disk access times continues to grow.

 1:14,000,000



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

RELATIVE SPEEDS OF THE MEMORY 

HIERARCHY

L2.10



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.11

Since caches have limited size, cache management is 

critical

Level 1 2 3 4

Name registers cache Main memory Disk Storage

Typical Size < 1 KB < 16 MB < 64 GB > 100 GB

Implementation 

Technology

Custom 

memory, 

CMOS

On/off chip 

CMOS SRAM

CMOS DRAM Magnetic disk

Access times 0.25 ns 0.5-25 ns 80-250 ns > 5 ms

Bandwidth 

(MB/sec)

20,000 – 

100,000

5000-10,000 1000-5000 80-300

Managed by compiler hardware OS OS

Backed by cache Main memory Disk CD/Tape



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

DEVICE CONTROLLERS & I/O

L2.12



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.13

A large portion of the OS code is dedicated for 

managing I/O

 A typical system comprises CPUs and multiple device controllers 

connected through a bus

 High end systems use switch based architecture

 Components talk to each other concurrently

 No competition for cycles on the bus



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.14

Device controllers and drivers

 A device controller is responsible for a specific type of device.

 More than 1 device may be attached

 There is a device driver for each controller



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.15

Device controllers move data between its 

local buffer storage & peripheral devices

 Device driver loads appropriate registers in the controller

 Controller examines contents to determine action to take

 Controller transfers data from device to its local buffer

 Once transfer is complete, controller informs driver via an 

interrupt

 Device driver then returns control to the OS



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.16

Direct memory access is much faster than interrupt 

driven I/O

 Controller sets up buffers, pointers, and counters for IO 

device

 Transfer entire block of data directly to (or from) its 

own buffer storage to main memory

 No CPU intervention needed

 Only one interrupt per block

 As opposed to interrupts-per-byte for low speed devices 



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

BUSES

L2.17



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.18

A simple bus-based structure

CPU
Graphics

AdapterDisk Controller
USB 

Controller

Memory

{Disk 1, Disk 2}

{Mouse, Keyboard, 

Printer} {Monitor}

Bus



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.19

Limitations of the bus structure from the earlier slide

 As processors and memories got faster

 Ability of a single bus to handle all traffic strained considerably

 Result?

 Additional buses were added

 For faster I/O devices and CPU-memory traffic



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.20

What a modern bus architecture looks like

Level 2 
Cache

CPU
PCI 

Bridge
Main 

Memory

SCSI USB
ISA 

Bridge

IDE 
Disk Graphics 

Adaptor

Cache 

bus
Local 

bus Memory bus

PCI Bus

ISA Bus

Modem
Sound 
Card

Printer

IDE 

Bus



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.21

There are two main BUS standards

 Original IBM PC ISA (Industry Standard Architecture)

 PCI (Peripheral Component Interconnect)

 From Intel



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.22

The IBM PC ISA bus

 Runs at 8.33 MHz

 Transfers 2 bytes at once

 Maximum speed = 16.67 MB/sec

 Included for backward compatibility

 Older and slower I/O cards



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.23

The PCI bus

 Can run at 66 MHz 

 Transfer 8 bytes at once

 Data transfer rate: 528 MB/sec

 Most high-speed I/O devices use PCI

 Newer computers have an updated version of PCI

 PCI Express



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.24

Other specialized buses:

IDE (Integrated Drive Electronics) bus 

 For attaching peripheral devices

 CD-ROMs and Disks 

 Grew out of the disk controller interface



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.25

Other specialized buses:

USB (Universal Serial Bus)

 Attach slow I/O devices to the computer

 Keyboard, mouse etc

 Uses a small 4-wire connector

 Two supply electrical power to the USB devices

 Centralized bus

 Root device polls I/O devices every 1 millisecond

◼ Check if they have any traffic



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.26

Some more information about USB

 All USB devices share a single USB device driver

 No need to install a driver for each device

 Can be added to computer without need to reboot

 USB 1.0 has a transfer rate of 1.5 MB/sec

 USB 2.0 goes up to 60 MB/sec

 USB 3.0 

 Specification ready on 17 November 2008

 Theoretical signaling rate: 600 MB/sec (4.8 Gbps)

 USB 3.1: Jan 2013 will go to 10 Gbps

◼ On par with Thunderbolt (developed by Apple and Intel in 2011) 



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.27

USB: Evolution

 https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html

https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html
https://www.pshinecable.com/article/usb-c-cable-wiring-diagram.html


CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.28

Other buses

 SCSI (Small Computer System Interface)

 High performance bus

 For devices that need high bandwidth

◼ Fast disks, scanners

 Up to 320 MB/sec

 IEEE 1394

 Sometimes called FireWire (used by Apple)

 Transfer speeds of up to 100 MB/sec

◼ Camcorders and similar multimedia devices

 No need for a central controller (unlike USB) 



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.29

In this setting the OS must know which devices are connected & 

how to configure them

 Led Intel and Microsoft to design plug-and-play

 Similar concept had been implemented in the Mac



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.30

How things were before plug-and-play

 Each I/O card had a fixed interrupt level

 Fixed addresses for its I/O registers

Device Interrupt/I/O addresses

Keyboards Interrupt 1, 

I/O addresses: 0x60-0x64

Floppy disk controller Interrupt 6, 

I/O addresses: 0x3F0-0x3F7

Printer Interrupt 7, 

I/O addresses: 0x378-0x37A



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.31

How things were before plug-and-play

 What if someone bought a sound card and a 
modem which happened to use interrupt 4?

 Conflict

 Would not work together

 Solution:

 Use DIP (dual in-line package) switches or jumpers on 
every I/O card

 Ask user to select interrupt level and I/O device 
addresses for the device

 Tedious!



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.32

How does Plug-and-play work?

① Automatically collect information about devices

② Centrally assign interrupt levels + I/O addresses

③ Tell each card what its numbers are



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

PERFORMANCE

L2.33



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.34

Single processor systems have 1 CPU that can 

execute general-purpose instructions

 The system may have special purpose processors

 Incapable of running user processes

 Limited instruction set

 Disk controller micro-processor 

 Implements disk queue and scheduling algorithms

 Keyboard microprocessors

 Convert keystrokes into CPU-bound codes



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.35

There are two approaches to improving 

performance

 Determine component bottlenecks

 Replicate

 Improve



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.36

To replicate or improve?  

“If  one ox could not do the job, they [pioneers] did not grow a bigger ox, 

but used two oxen.”

-- Admiral Grace Murray Hopper

Computer Software pioneer

“If  you were plowing a field, which would you rather use? Two strong oxen 

or 1024 chickens?”

-- Seymour Cray

Computer Hardware pioneer 



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.37

Multiprocessor systems have 2-or-more processors in 

close communications

 The processors share the bus, and may share clock, memory and 

peripheral devices

 Advantages:

 Increased throughput

 Reliability



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.38

Multiprocessor systems fall in two categories based 

on control

 Asymmetric multiprocessing: 

 Controller processor manages the system

 Workers rely on controller for instructions

 Symmetric multiprocessing

 Processors are peers and perform all OS tasks

 Have own set of registers and local cache

◼ Share physical memory

 Supported by virtually all modern OS 



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.39

Trend: going multi-core for CPUs 

 Driven by power / physics

 Problem: parallelism in

the application? 

 We merely see 16-core

CPUs as HEDT in 2024

Grabbed from DoE Scidac



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

MULTIPROGRAMMING

L2.40



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.41

Multiprogramming organizes jobs so that 

the CPU always has one to execute

 A single program (generally) cannot keep CPU & I/O devices busy at 

all times

 A user frequently runs multiple programs

 When a job needs to wait, the CPU switches to another job.

 Utilizes resources (cpu, memory, peripheral devices) effectively.



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.42

Time sharing is a logical extension of the 

multiprogramming model

 CPU switches between jobs frequently, users can 

interact with programs

 Time shared OS allows many users to use computer 

simultaneously

 Each action in a time shared OS tends to be short

 CPU time needed for each user is small



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.43

Grocery checkout : Several checkout counters 

(processes) & 1 checker (CPU)

 Multiprogramming

 Checker checks one item (instruction) at a time

 Continue checking till price check

 During price check move to another counter

 Time sharing

 Checker starts a 10-second timer 

 Process items for maximum of 10 seconds

◼ Move to another customer even if there is NO price check



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.44

Multiprogramming requires several jobs 

to be held simultaneously in memory

 Job scheduling: Decision about which of the ready jobs need to 

brought into memory

 CPU scheduling: Deciding which job needs to be run

 Swapping: The shuffling of processes in and out of memory to the disk



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

PROGRAMS AND PROCESSES

L2.45



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.46

Programs and processes: Process is a program in 

execution.

 Programs are passive; processes are active

 Processes need resources to accomplish task

 Single-threaded processes have one program counter 

pointing to next instruction to execute

 Multithreaded processes have multiple program 

counters

 One for each thread



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.47

Some terms related to processes

 Context switch time: Time to switch from executing one process to 

another

 Quantum: Amount of CPU time allocated to a process before another 

process can run



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.48

OS process management activities

 Schedule processes and threads on CPUs

 Create and delete processes

 Suspend and resume

 Mechanisms for process synchronization

 Mechanisms for process communications



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

SYSTEM CALLS

L2.49



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.50

System Calls

 Request to the OS for service

 Causes normal CPU processing to be interrupted

 Control to be given to the OS  



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.51

System calls provide an interface to OS services

 Runtime support for most languages provide a system call interface.

 API hides details of the OS interface

 Runtime library manages the invocation

 Passing parameters to the OS

 Registers

 Block, or table, in memory

 Etc.



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.52

Types of system calls

 Process control

 File manipulation

 Device manipulation

 Information maintenance

 Communications

 Protection



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.53

Mode bit allows us to distinguish between task 

executed on behalf of OS/user

 Mode bit: kernel (0) and user (1)

 Designate (potentially harmful) machine instructions as privileged 

instructions.

 Hardware enforces kernel mode executions



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.54

Mode bit 

 MS-DOS/Intel 8088 had no mode bit 

 No dual-mode

 A program can wipe out OS by writing over it

 Most modern OS take advantage of dual mode and provide greater 

protection for OS.  



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORY

L2.55



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.56

Main memory is generally the only large 

storage device the CPU deals with

 To execute a program, it must be mapped to absolute addresses and 

loaded into memory

 Execution involves accesses to instructions and data from memory

 By generating absolute addresses

 When program terminates, memory space is reclaimed



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

WHAT DO WE DO IF THERE ARE MORE PROCESSES 

THAN MEMORY TO ACCOMMODATE ALL OF THEM?

L2.57



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.58

Virtual memory allows processes not completely 

memory resident to execute

 Enables us to run programs that are larger than the actual physical 

memory

 Separates logical memory as viewed by user from physical memory

 Frees programmers from memory storage limitations



CS370: Operating Systems 

Dept. Of Computer Science, Colorado State University

PROGRAM CONSTRUCTS

L2.59



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.60

Important Program Constructs

 Communication, Concurrency & Asynchronous operation

 Challenges & Implications

 Improper handling can lead to failures for no apparent 

reason

 Run for weeks or months

 Avoid resource leaks 

 Cope with outrageously malicious input

 Recover from errors



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.61

Program Construct: 

Asynchronous operation

 Events happen at unpredictable times AND in 

unpredictable order.

 Interrupts from peripheral devices

 For e.g. keystrokes and printer data

 To be correct, a program must work will all possible 

timings

 Timing errors are very hard to repeat



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.62

Program Construct: 

Concurrency

 Sharing resources in the same time frame

 Interleaved execution

 Major task of modern OS is concurrency control

 Bugs are hard to reproduce, and produce unexpected side effects



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.63

Concurrency occurs at the hardware level 

because devices operate at the same time

 Interrupt: Electrical signal generated by a peripheral device to set 

hardware flag on CPU

 Interrupt detection is part of instruction cycle

 If interrupt detected

 Save current value of program counter

 Load new value that is address of interrupt service routine or interrupt 

handler: device drivers

◼ Drivers use signals (software) to notify processes



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.64

Signal is the software notification of an event

 Often a response of the OS to an interrupt 

 OS uses signals to notify processes of completed 

I/O operations or errors

 Signal generated when event that causes signal occurs

 For example: keystroke and Ctrl-C

 A process catches a signal by executing handlers for the signal



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.65

Concurrency constructs: I/O operations

 Coordinate resources so that CPU is not idle

 Blocking I/O blocks the progress of a process

 Asynchronous I/O (dedicated) threads circumvent this problem

 Ex: Application monitors 2 network channels

 If application is blocked waiting for input from one source, it cannot respond 

to input on 2nd channel



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.66

Concurrency constructs: Processes & threads 

 User can create multiple processes; fork() in UNIX

 Inter process communications

 Common ancestor: pipes

 No common ancestor: signals, semaphores, shared address spaces, or 

messages

 Multiple threads within process = concurrency



CS370: System Architecture & Software 

Dept. Of Computer Science, Colorado State University

L2.67

The contents of this slide-set are based on the 

following references

 Andrew S Tanenbaum. Modern Operating Systems. 4th  Edition, 2014. Prentice Hall. 

ISBN: 013359162X/ 978-0133591620. [Chapter 1]

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 1, 2]

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 

ISBN-13: 978-0-13-042411-2. [Chapter 1]


	Slide 1: CS 370: Operating Systems  [Introduction]
	Slide 2: Course Overview
	Slide 3: Topics covered in this lecture
	Slide 4: Reminder: Computer Organization
	Slide 5: Secondary storage is needed to hold large quantities of data permanently
	Slide 6: Improvements in hard disk capacity
	Slide 7: Improvements in hard disk capacity
	Slide 8: Characteristics of peripheral devices & their speed relative to the CPU
	Slide 9: Mechanical nature of disks limits their performance
	Slide 10: Relative speeds of the memory hierarchy
	Slide 11: Since caches have limited size, cache management is critical
	Slide 12: Device Controllers & I/O
	Slide 13: A large portion of the OS code is dedicated for managing I/O
	Slide 14: Device controllers and drivers
	Slide 15: Device controllers move data between its local buffer storage & peripheral devices
	Slide 16: Direct memory access is much faster than interrupt driven I/O
	Slide 17: Buses
	Slide 18: A simple bus-based structure
	Slide 19: Limitations of the bus structure from the earlier slide
	Slide 20: What a modern bus architecture looks like
	Slide 21: There are two main BUS standards
	Slide 22: The IBM PC ISA bus
	Slide 23: The PCI bus
	Slide 24: Other specialized buses: IDE (Integrated Drive Electronics) bus 
	Slide 25: Other specialized buses: USB (Universal Serial Bus)
	Slide 26: Some more information about USB
	Slide 27: USB: Evolution
	Slide 28: Other buses
	Slide 29: In this setting the OS must know which devices are connected & how to configure them
	Slide 30: How things were before plug-and-play
	Slide 31: How things were before plug-and-play
	Slide 32: How does Plug-and-play work?
	Slide 33: Performance
	Slide 34: Single processor systems have 1 CPU that can execute general-purpose instructions
	Slide 35: There are two approaches to improving performance
	Slide 36: To replicate or improve?  
	Slide 37: Multiprocessor systems have 2-or-more processors in close communications
	Slide 38: Multiprocessor systems fall in two categories based on control
	Slide 39: Trend: going multi-core for CPUs 
	Slide 40: Multiprogramming
	Slide 41: Multiprogramming organizes jobs so that the CPU always has one to execute
	Slide 42: Time sharing is a logical extension of the multiprogramming model
	Slide 43: Grocery checkout : Several checkout counters (processes) & 1 checker (CPU)
	Slide 44: Multiprogramming requires several jobs to be held simultaneously in memory
	Slide 45: Programs and Processes
	Slide 46: Programs and processes: Process is a program in execution.
	Slide 47: Some terms related to processes
	Slide 48: OS process management activities
	Slide 49: System Calls
	Slide 50: System Calls
	Slide 51: System calls provide an interface to OS services
	Slide 52: Types of system calls
	Slide 53: Mode bit allows us to distinguish between task executed on behalf of OS/user
	Slide 54: Mode bit 
	Slide 55: Virtual Memory
	Slide 56: Main memory is generally the only large storage device the CPU deals with
	Slide 57: What do we do if there are more processes than memory to accommodate all of them?
	Slide 58: Virtual memory allows processes not completely memory resident to execute
	Slide 59: Program Constructs
	Slide 60: Important Program Constructs
	Slide 61: Program Construct:  Asynchronous operation
	Slide 62: Program Construct:  Concurrency
	Slide 63: Concurrency occurs at the hardware level because devices operate at the same time
	Slide 64: Signal is the software notification of an event
	Slide 65: Concurrency constructs: I/O operations
	Slide 66: Concurrency constructs: Processes & threads 
	Slide 67: The contents of this slide-set are based on the following references

