
CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[PROCESSES]

Computer Science

Colorado State University

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.2

Topics covered in this lecture

 Processes

 Interrupts & Context switches

 Operations on processes

 Creation

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROCESSES

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.4

Process

 The oldest and most important abstraction that an operating system

provides

 Support the ability to have (psuedo) concurrent operation

 Even if there is only 1 CPU

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.5

All modern computers do several things at a time

 Browsing while e-mail client is fetching data

 Printing files while burning a CD-ROM

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.6

Multiprogramming

 CPU switches from process-to-process quickly

 Runs each process for 10s-100s of milliseconds

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.7

Multiprogramming and parallelism

 At any instant of time the CPU is running only one process

 In the course of 1 second, it is working on several of them

 Gives the illusion of parallelism

 Psuedoparallelism

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.8

A process is the unit of work in most systems

 Arose out of a need to compartmentalize and control concurrent

program executions

 A process is a program in execution

 Essentially an activity of some kind

 Has a program, input, output and a state.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.9

A process is just an instance of an executing program

 Conceptually each process has its own virtual CPU

 In reality, the CPU switches back-and-forth from process to process

 Processes are not affected by the multiprogramming

 Or relative speeds of different processes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.10

An example scenario: 4 processes

A

B

C

D

A

B C

D

Four Program Counters

4 processes in
memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.11

Example scenario: 4 processes

Pr
oc

es
se

s

A

B

C

D

Time

• At any instant only one process executes

• Viewed over a long time, all processes have made

progress

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROGRAMS AND PROCESSES

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.13

Programs and processes

 Programs are passive, processes are active

 The difference between a program and a process is subtle, but crucial

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.14

Analogy of a culinary-minded computer

scientist baking cake for daughter
Analogy Mapping to real settings

Birthday cake recipe

Well-stocked kitchen:
flour, eggs, sugar, vanilla extract, etc

Computer scientist

Program (algorithm expressed
in a suitable notation)

Input Data

Processor (CPU)

• Process is the activity of

① Baker reading the recipe

② Fetching the ingredients

③ Baking the cake

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.15

Scientist’s son comes in screaming about a bee sting

 Scientist records where he was in the recipe

 State of current process is saved

 Gets out a first aid book, follows directions in it

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.16

In our example, the scientist has switched to a higher

priority process …

 FROM Baking

 Program is cake recipe

 TO administering medical care

 Program is first-aid book

 When the bee sting is taken care of

 Scientist goes back to where he was in the baking

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.17

Key concepts

 Process is an activity of some kind; it has a

 Program

 Input and Output

 State

 Single processor may be shared among several processes

 Scheduling algorithm decides when to stop work on one, and start work on

another

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

HOW A PROGRAM BECOMES A PROCESS

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.19

How a program becomes a process

 When a program is executed, the OS copies the program image into

main memory

 Allocation of memory is not enough to make a program into a process

 Must have a process ID

 OS tracks IDs and process states to orchestrate system resources

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.20

A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters,

 return addresses,

 and local variables}

max

low

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.21

Program in memory (I)

 Program image appears to occupy contiguous blocks of memory

 OS maps programs into non-contiguous blocks

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.22

Program in memory (II)

 Mapping divides the program into equal-sized pieces: pages

 OS loads pages into memory

 When processor references memory on page

 OS looks up page in table, and loads into memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.23

Advantages of the mapping process

 Allows large logical address space for stack and heap

 No physical memory used unless actually needed

 OS hides the mapping process

 Programmer views program image as logically contiguous

 Some pages may not reside in memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.24

Finite State Machine

 An initial state

 A set of possible input events

 A finite number of states

 Transitions between these states

 Actions

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.25

Process state transition diagram: When a process

executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.26

Each process is represented by a process control

block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any

information that varies from

process to process.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.27

An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.28

Scheduling Queues

 Job Queue: Contains all processes

 A newly created process enters here first

 Ready Queue

 Processes residing in main memory

 Ready and waiting to execute

 Typically a linked list

 Device Queue

 Processes waiting for a particular I/O device

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.29

Process scheduling

CPU
Ready

queue

I/O QueueI/O
I/O

request

Time slice

expired

Fork a

child

Wait for an

interrupt

interrupt

occurs

child

executes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.30

Throughout its lifetime a process migrates

among various scheduling queues

 Long-term scheduler: Batch systems

 Executes much less frequently

 Can take more time to decide what to select

 Short-term scheduler

 Select process for CPU frequently

 Selected process executes for few milliseconds

 Typically, execute once every 10-100 milliseconds

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.31

UNIX and Windows systems often have no long-term

scheduler

 Put every new process in memory for the short-term scheduler

 System stability depends on:

 Physical limitations: Number of terminals

 Self-adjusting nature of users

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.32

Somewhere in between: The medium term scheduler

 PREMISE: It can be advantageous to reduce degree of

multiprogramming

 Remove processes from memory

 Reduce active contention for the CPU

 Reintroduce processes later on: Swapping

 Swapping improves the process mix

 Cope with strains on resources such as memory

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

INTERRUPTS & CONTEXTS

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.34

Interrupts and Contexts

 Interrupt causes the OS to change CPU from its

current task to run a kernel routine

 Save current context so that suspend and resume are

possible

 Context is represented in the PCB

 Value of CPU registers

 Process state

 Memory management information

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.35

Context switch refers to switching from one process

to another

① Save state of current process

② Restore state of a different process

 Context switch time is pure overhead

 No useful work done while switching

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.36

Factors that impact the speed of the context switch

 Memory speed

 Number of registers to copy

 Special instructions for loading/storing registers

 Memory management: Preservation of address space

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

OPERATIONS ON PROCESSES

Processes execute concurrently

Can be created and deleted dynamically.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.38

Process Creation: A process may create new

processes during its execution

 Parent process: The creating process

 Child process: New process that was created

 May itself create processes: Process tree

 All processes have unique identifiers

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.39

Example: Process tree in Solaris
Sched

pid=0

pageout

pid=2

init

pid=1

fsflush

pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.40

Processes in UNIX

 init : Root parent process for all user processes

 Get a listing of processes with ps command

▪ ps: List of all processes associated with user

▪ ps –a : List of all processes associated with terminals

▪ ps –A : List of all active processes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.41

Resource sharing between a process and its

subprocess

 Child process may obtain resources directly from OS

 Child may be constrained to a subset of parent’s resources

 Prevents any process from overloading system

 Parent process also passes along initialization data to the child

 Physical and logical resources

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.42

Parent/Child processes:

Execution possibilities

 Parent executes concurrently with children

 Parent waits until some or all of its children terminate

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.43

Parent/Child processes:

Address space possibilities

 Child is a duplicate of the parent

 Same program and data as parent

 Child has a new program loaded into it

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROCESS CREATION

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.45

Process creation in UNIX

 Process created using fork()

 fork() copies parent’s memory image

 Includes copy of parent’s address space

 Parent and child continue execution at instruction after

fork()

 Child: Return code for fork() is 0

 Parent: Return code for fork() is the non-ZERO process-ID

of new child

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.46

fork() results in the creation of 2 distinct programs

Parent
PID=abc

…

…

id =fork()

…

…

Child
PID=xyz

…

…

id =fork()

…

…

Results in

id = xyz here id = 0 here

Child will
execute
from here

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.47

Simple example:

#include <stdio.h>

#include <unistd.h>

int main(void) {

 int x;

 x=0;

 fork();

 x=1;

 …

}

Both parent and child

execute this after

returning from fork()

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.48

Another example
#include <stdio.h>

#include <unistd.h>

int main () {

 printf(“Hello World\n”);

 fork();

 printf(“Hello World\n”);

 }

#include <stdio.h>

#include <unistd.h>

int main () {

 printf(“Hello World\n”);

 if (fork()==0) {

 printf(“Hello World\n”);

 }

}

Hello World

Hello World

Hello World

Hello World

Hello World

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.49

What happens when fork() fails?

 No child is created

 fork() returns -1 and sets errno

 errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.50

If a system is short on resources OR

if limit on number of processes breached

 fork() sets errno to EAGAIN

 Some typical numbers for Solaris

▪ maxusers: 2 less than number of MB of physical memory up to 1024

◼ Set up to 2048 manually in /etc/system file

▪ mx_nprocs: Default: 16 x maxusers + 10

min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.51

Take different paths depending on what happens

with fork()

childpid = fork();

if (childpid == -1) {

 perror(“Failed to fork”);

 return 1;

}

if (childpid == 0) {

 ….. child specific processing

} else {

 ….. parent specific processing

}
Child (any process) can use

getpid() to retrieve

its process ID

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.52

Creating a chain of processes

for (int i=1; i < 4; i++) {

 if (childid = fork()) {

 break;

 }

}

For each iteration:

Parent has non-ZERO childid

 So it breaks out

Child process

 Parent in NEXT iteration

1

2

3

4

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.53

Creating a process fan

for (int i=1; i < 4; i++) {

 if ((childid = fork()) <= 0) {

 break;

 }

}
Newly created process breaks out

Original process continues
4

1
2 3

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.54

Creation of a process tree

int i=0;

for (i=1; i < 4; i++) {

 if ((childid = fork()) == -1) {

 break;

 }

}

Original process has a 0 label

Value of i when created

Lower case letters: Process created with same i

Both parent and child

 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.55

The contents of this slide-set are based on the

following references

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

 Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.

ISBN: 013359162X/ 978-0133591620. [Chapter 2].

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall

ISBN-13: 978-0-13-042411-2.

[Chapter 2, 3]

	Slide 1: CS 370: Operating Systems [Processes]
	Slide 2: Topics covered in this lecture
	Slide 3: Processes
	Slide 4: Process
	Slide 5: All modern computers do several things at a time
	Slide 6: Multiprogramming
	Slide 7: Multiprogramming and parallelism
	Slide 8: A process is the unit of work in most systems
	Slide 9: A process is just an instance of an executing program
	Slide 10: An example scenario: 4 processes
	Slide 11: Example scenario: 4 processes
	Slide 12: Programs and Processes
	Slide 13: Programs and processes
	Slide 14: Analogy of a culinary-minded computer scientist baking cake for daughter
	Slide 15: Scientist’s son comes in screaming about a bee sting
	Slide 16: In our example, the scientist has switched to a higher priority process …
	Slide 17: Key concepts
	Slide 18: How a program becomes a process
	Slide 19: How a program becomes a process
	Slide 20: A process in memory
	Slide 21: Program in memory (I)
	Slide 22: Program in memory (II)
	Slide 23: Advantages of the mapping process
	Slide 24: Finite State Machine
	Slide 25: Process state transition diagram: When a process executes it changes state
	Slide 26: Each process is represented by a process control block (PCB)
	Slide 27: An example of CPU switching between processes
	Slide 28: Scheduling Queues
	Slide 29: Process scheduling
	Slide 30: Throughout its lifetime a process migrates among various scheduling queues
	Slide 31: UNIX and Windows systems often have no long-term scheduler
	Slide 32: Somewhere in between: The medium term scheduler
	Slide 33: Interrupts & Contexts
	Slide 34: Interrupts and Contexts
	Slide 35: Context switch refers to switching from one process to another
	Slide 36: Factors that impact the speed of the context switch
	Slide 37: Operations on Processes
	Slide 38: Process Creation: A process may create new processes during its execution
	Slide 39: Example: Process tree in Solaris
	Slide 40: Processes in Unix
	Slide 41: Resource sharing between a process and its subprocess
	Slide 42: Parent/Child processes: Execution possibilities
	Slide 43: Parent/Child processes: Address space possibilities
	Slide 44: Process Creation
	Slide 45: Process creation in UNIX
	Slide 46: fork() results in the creation of 2 distinct programs
	Slide 47: Simple example:
	Slide 48: Another example
	Slide 49: What happens when fork() fails?
	Slide 50: If a system is short on resources OR if limit on number of processes breached
	Slide 51: Take different paths depending on what happens with fork()
	Slide 52: Creating a chain of processes
	Slide 53: Creating a process fan
	Slide 54: Creation of a process tree
	Slide 55: The contents of this slide-set are based on the following references

