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Topics covered in this lecture

 Processes

 Interrupts & Context switches

 Operations on processes

 Creation
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Process

 The oldest and most important abstraction that an operating system 

provides

 Support the ability to have (psuedo) concurrent operation

 Even if there is only 1 CPU
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All modern computers do several things at a time

 Browsing while e-mail client is fetching data

 Printing files while burning a CD-ROM
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Multiprogramming

 CPU switches from process-to-process quickly

 Runs each process for 10s-100s of milliseconds
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Multiprogramming and parallelism

 At any instant of time the CPU is running only one process

 In the course of 1 second, it is working on several of them

 Gives the illusion of parallelism

 Psuedoparallelism 
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A process is the unit of work in most systems

 Arose out of a need to compartmentalize and control concurrent 

program executions

 A process is a program in execution

 Essentially an activity of some kind

 Has a program, input, output and a state.
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A process is just an instance of an executing program

 Conceptually each process has its own virtual CPU

 In reality, the CPU switches back-and-forth from process to process

 Processes are not affected by the multiprogramming

 Or relative speeds of different processes
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An example scenario: 4 processes
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Example scenario: 4 processes
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• At any instant only one process executes

• Viewed over a long time, all processes have made 

progress
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Programs and processes

 Programs are passive, processes are active

 The difference between a program and a process is subtle, but crucial
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Analogy of a culinary-minded computer 

scientist baking cake for daughter
Analogy Mapping to real settings

Birthday cake recipe

Well-stocked kitchen:
flour, eggs, sugar, vanilla extract, etc

Computer scientist

Program (algorithm expressed
in a suitable notation)

Input Data

Processor (CPU)

• Process is the activity of

① Baker reading the recipe

② Fetching the ingredients

③ Baking the cake
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Scientist’s son comes in screaming about a bee sting

 Scientist records where he was in the recipe

 State of current process is saved

 Gets out a first aid book, follows directions in it
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In our example, the scientist has switched to a higher 

priority process …

 FROM Baking

 Program is cake recipe

 TO administering medical care 

 Program is first-aid book

 When the bee sting is taken care of

 Scientist goes back to where he was in the baking
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Key concepts

 Process is an activity of some kind; it has a

 Program

 Input and Output

 State

 Single processor may be shared among several processes

 Scheduling algorithm decides when to stop work on one, and start work on 

another 
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How a program becomes a process

 When a program is executed, the OS copies the program image into 

main memory

 Allocation of memory is not enough to make a program into a process

 Must have a process ID

 OS tracks IDs and process states to orchestrate system resources 
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A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters, 

  return addresses, 

  and local variables}

max

low
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Program in memory (I)

 Program image appears to occupy contiguous blocks of memory

 OS maps programs into non-contiguous blocks
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Program in memory (II)

 Mapping divides the program into equal-sized pieces: pages

 OS loads pages into memory

 When processor references memory on page

 OS looks up page in table, and loads into memory
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Advantages of the mapping process

 Allows large logical address space for stack and heap

 No physical memory used unless actually needed

 OS hides the mapping process

 Programmer views program image as logically contiguous

 Some pages may not reside in memory 
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Finite State Machine

 An initial state

 A set of possible input events

 A finite number of states

 Transitions between these states

 Actions
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Process state transition diagram: When a process 

executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion
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Each process is represented by a process control 

block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any 

information that varies from 

process to process.
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An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle
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Scheduling Queues

 Job Queue: Contains all processes

 A newly created process enters here first

 Ready Queue

 Processes residing in main memory

 Ready and waiting to execute

 Typically a linked list

 Device Queue

 Processes waiting for a particular I/O device
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Process scheduling

CPU
Ready 

queue

I/O QueueI/O
I/O 

request

Time  slice

expired

Fork a 

child

Wait for an

interrupt

interrupt

occurs

child 

executes
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Throughout its lifetime a process migrates 

among various scheduling queues

 Long-term scheduler: Batch systems

 Executes much less frequently

 Can take more time to decide what to select

 Short-term scheduler

 Select process for CPU frequently

 Selected process executes for few milliseconds

 Typically, execute once every 10-100 milliseconds 
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UNIX and Windows systems often have no long-term 

scheduler

 Put every new process in memory for the short-term scheduler

 System stability depends on:

 Physical limitations: Number of terminals

 Self-adjusting nature of users
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Somewhere in between: The medium term scheduler

 PREMISE: It can be advantageous to reduce degree of 

multiprogramming

 Remove processes from memory

 Reduce active contention for the CPU

 Reintroduce processes later on: Swapping

 Swapping improves the process mix

 Cope with strains on resources such as memory
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Interrupts and Contexts

 Interrupt causes the OS to change CPU from its 

current task to run a kernel routine

 Save current context so that suspend and resume are 

possible

 Context is represented in the PCB

 Value of CPU registers

 Process state

 Memory management information
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Context switch refers to switching from one process 

to another

①  Save state of current process

②  Restore state of a different process

 Context switch time is pure overhead

 No useful work done while switching
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Factors that impact the speed of the context switch

 Memory speed

 Number of registers to copy

 Special instructions for loading/storing registers

 Memory management: Preservation of address space
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OPERATIONS ON PROCESSES

Processes execute concurrently 

Can be created and deleted dynamically.
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Process Creation: A process may create new 

processes during its execution

 Parent process: The creating process

 Child process: New process that was created

 May itself create processes: Process tree

 All processes have unique identifiers
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Example: Process tree in Solaris
Sched

pid=0

pageout 

pid=2

init

pid=1

fsflush 

pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin
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Processes in UNIX

 init : Root parent process for all user processes

 Get a listing of processes with ps command 

▪ ps: List of all processes associated with user

▪ ps –a : List of all processes associated with   terminals

▪ ps –A : List of all active processes
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Resource sharing between a process and its 

subprocess

 Child process may obtain resources directly from OS

 Child may be constrained to a subset of parent’s resources

 Prevents any process from overloading system

 Parent process also passes along initialization data to the child

 Physical and logical resources
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Parent/Child processes: 

Execution possibilities

 Parent executes concurrently with children

 Parent waits until some or all of its children terminate
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Parent/Child processes: 

Address space possibilities

 Child is a duplicate of the parent

 Same program and data as parent

 Child has a new program loaded into it
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Process creation in UNIX

 Process created using fork()

 fork() copies parent’s memory image

 Includes copy of parent’s address space

 Parent and child continue execution at instruction after 

fork()

 Child: Return code for fork() is  0 

 Parent: Return code for fork() is the non-ZERO process-ID 

of new child
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fork() results in the creation of 2 distinct programs

Parent
PID=abc

…

…

id =fork()

…

…

Child
PID=xyz

…

…

id =fork()

…

…

Results in

id = xyz here id = 0 here

Child will 
execute
from here
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Simple example:

#include <stdio.h>

#include <unistd.h>

int main(void) {

    int x;

    x=0;

    fork();

    x=1;

    …

}

Both parent and child 

execute this after 

returning from fork()



CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.48

Another example
#include <stdio.h>

#include <unistd.h>

int main () { 

    printf(“Hello World\n”); 

    fork(); 

    printf(“Hello World\n”);

 }

#include <stdio.h>

#include <unistd.h>

int main () { 

    printf(“Hello World\n”); 

    if (fork()==0) {

       printf(“Hello World\n”);

    } 

}

Hello World

Hello World

Hello World

Hello World

Hello World
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What happens when fork() fails?

 No child is created

 fork() returns -1 and sets errno

 errno is a global variable in errno.h
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If a system is short on resources OR

if limit on number of processes breached

 fork() sets errno to EAGAIN 

 

 Some typical numbers for Solaris

▪ maxusers: 2 less than number of MB of physical memory up to 1024

◼ Set up to 2048 manually in /etc/system file

▪ mx_nprocs: Default: 16 x maxusers + 10

min = 138, max = 30,000
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Take different paths depending on what happens 

with fork()

childpid = fork();

if (childpid == -1) {

   perror(“Failed to fork”);

   return 1;

}

if (childpid == 0) {

   ….. child specific processing

} else {

   ….. parent specific processing

}
Child (any process) can use

getpid() to retrieve 

its process ID
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Creating a chain of processes

for (int i=1; i < 4; i++) {

   if (childid = fork()) {

       break;

   }

}

For each iteration:

Parent has non-ZERO childid

    So it breaks out

Child process 

    Parent in NEXT iteration

1

2

3

4

value of i

when process leaves loop
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Creating a process fan

for (int i=1; i < 4; i++) {

   if ((childid = fork()) <= 0) {

       break;

   }

}
Newly created process breaks out

Original process continues
4

1
2 3

value of i

when process leaves loop
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Creation of a process tree

int i=0;

for (i=1; i < 4; i++) {

   if ((childid = fork()) == -1) {

       break;

   }

}

Original process has a 0 label

Value of i when created

Lower case letters: Process  created with same i 

Both parent and child 

     go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b
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The contents of this slide-set are based on the 

following references

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

 Andrew S Tanenbaum. Modern Operating Systems. 4th  Edition, 2014. Prentice Hall. 

ISBN: 013359162X/ 978-0133591620. [Chapter 2].

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 

ISBN-13: 978-0-13-042411-2. 

[Chapter 2, 3]
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