
CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[PROCESSES]

Computer Science

Colorado State University

L4.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.2

Topics covered in this lecture

 Operations on processes

 Creation

 Termination

 Process groups

 Buffer Overflows

 One of the greatest security violations of all time

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

FORK()
All processes in UNIX are created using the fork() system call.

L4.3

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.4

fork() results in the creation of 2 distinct processes

Parent
PID=abc

…

…

id =fork()

…

…

Child
PID=xyz

…

…

id =fork()

…

…

Results in

id = xyz here id = 0 here

Child will
execute
from here

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.5

What happens when fork() fails?

 No child is created

 fork() returns -1 and sets errno

 errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.6

If a system is short on resources OR

if limit on number of processes breached

 fork() sets errno to EAGAIN

 Some typical numbers for Solaris

▪ maxusers: 2 less than number of MB of physical memory up to 1024

◼ Set up to 2048 manually in /etc/system file

▪ mx_nprocs: Default: 16 x maxusers + 10

min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.7

Take different paths depending on what happens

with fork()

childpid = fork();

if (childpid == -1) {

 perror(“Failed to fork”);

 return 1;

}

if (childpid == 0) {

 ….. child specific processing

} else {

 ….. parent specific processing

}
Child (any process) can use

getpid() to retrieve

its process ID

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.8

Creating a chain of processes

for (int i=1; i < 4; i++) {

 if ((childid = fork())) {

 break;

 }

}

For each iteration:

Parent has non-ZERO childid

 So it breaks out

Child process

 Parent in NEXT iteration

1

2

3

4

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.9

Creating a process fan

for (int i=1; i < 4; i++) {

 if ((childid = fork()) == 0) {

 break;

 }

}
Newly created process breaks out

Original process continues
4

1
2 3

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.10

Creation of a process tree

int i=0;

for (i=1; i < 4; i++) {

 if ((childid = fork()) == -1) {

 break;

 }

}

Original process has a 0 label

Value of i when created

Lower case letters: Process created with same i

Both parent and child

 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.11

Replacing a process’s memory space with a new

program

 Use exec() after the fork() in one of the two

processes

 exec() does the following:

① Destroys memory image of program containing the

call

② Replaces the invoking process’s memory space with a

new program

③ Allows processes to go their separate ways

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.12

Replacing a process’s memory space with a new

program

 TRADITION:

 Child executes new program

 Parent executes original code

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.13

Launching programs using the shell is a two-step

process

 Example: user types sort on the shell

① Shell forks off a child process

② Child executes sort

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.14

But why is this the case?

 Allows the child to manipulate its file descriptors

 After the fork()

 But before the exec()

 Accomplish redirection of standard input, standard

output, and standard error

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.15

A parent can move itself from off the

ready queue and await child’s termination

 Done using the wait() system call.

 When child process completes, parent process

resumes

fork()

wait()

exec(

)
exit()

resumes
parent

child

Return value = Non-ZERO

 child PID

Return value=ZERO

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.16

wait/waitpid allows caller to suspend

execution till a child’s status is available

 Process status availability

 Most commonly after termination

 Also available if process is stopped

 waitpid(pid, *stat_loc, options)

▪ pid== -1 : any child

▪ pid > 0 : specific child

▪ pid == 0 : any child in the same process group

▪ pid < -1 :any child in process group abs(pid)

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.17

Process creation in Windows

 CreateProcess handles

① Process creation

② Loading in a new program

 Parent and child’s address spaces are different from

the start

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.18

CreateProcess takes up to 10 parameters

 Program to be executed

 Command line parameters that feed program

 Security attributes

 Bits that control whether files are inherited

 Priority information

 Window to be created?

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.19

Process Management on Windows

 WIN 32 has about 100 other functions

 Managing & Synchronizing processes

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROCESS GROUPS

L4.20

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.21

Process groups

 Process group is a collection of processes

 Each process has a process group ID

 Process group leader?

 Process with pid==pgid

 kill treats negative pid as pgid

 Sends signal to all constituent processes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.22

Process Group IDs:

When a child is created with fork()

① Inherits parent’s process group ID

② Parent can change group ID of child by using

setpgid

③ Child can give itself new process group ID

 Set process group ID = its process ID

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.23

Process groups

 It can contain processes which are:

① Parent (and further ancestors)

② Siblings

③ Children (and further descendants)

 A process can only send signals to members of its process group

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.24

Example: Process tree in Solaris
Sched

pid=0

pageout

pid=2

init

pid=1

fsflush

pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.25

Windows has no concept of a process hierarchy

 The only hint of a hierarchy?

 When a process is created, parent is given a special token (called handle)

◼ Use this to control the child

 However, parent is free to pass this token to some other process

 Invalidates hierarchy

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROCESS TERMINATIONS

L4.26

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.27

Process terminations

 Normal exit (voluntary)

 E.g. successful compilation of a program

 Error exit (voluntary)

 E.g. trying to compile a file that does not exist

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.28

Process terminations

 Fatal error (involuntary)

 Program bug

◼ Referencing non-existing memory, dividing by zero, etc

 Killed by another process (involuntary)

 Execute system call telling OS to kill some other process

 Killer must be authorized to do the killing of the killee

 Unix: kill Win32: TerminateProcess

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.29

Process terminations:

This can be either normal or abnormal

 OS deallocates the process resources

 Cancel pending timers and signals

 Release virtual memory resources and locks

 Close any open files

 Updates statistics

 Process status and resource usage

 Notifies parent in response to a wait()

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.30

On termination a UNIX process DOES NOT fully release resources

until a parent execute a wait() for it

 When the parent is not waiting when the child terminates?

 The process becomes a zombie

 Zombie is an inactive process

 Still has an entry in the process table

 But is already dead, so cannot be killed easily!! ☺

 Zombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still

active, etc.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.31

Zombies and termination

 When a process terminates, its orphaned children and

are adopted by a special process

 This special system process is init

 Some more about the special process init

① Has a pid of 1

② Periodically executes wait() for children

③ Children without a parent are adopted by init

◼ Zombie processes are adopted by init after killing their
parent, then cleaned by the periodic wait()

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.32

Normal termination of processes

 Return from main

 Implicit return from main

 Function falls off the end

 Call to exit, _Exit or _exit

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.33

The C exit function

 Call user-defined exit handlers that were registered by the atexit

 Invocation is in reverse order of registration

 Execute the function pointed by func when process terminates

#include <stdlib.h>

int atexit(void (*func)())

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.34

Other things that the exit function does

 Flushes any open streams that have unwritten buffered data

 Closes all open streams

 Remove all temporary files

 Created by tmpfile()

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.35

More info about the exit functions

 _Exit and _exit do not call user-defined exit handlers

 POSIX does not specify what happens

 All functions (exit, _Exit and _exit) take a parameter: status

 Indicates termination status of program

 0 is a successful termination

 Non-ZERO values: Programmer defined errors

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.36

Abnormal termination

 Call abort

 Process signal that causes termination

 Generated by an external event: keyboard Ctrl-C

 Internal errors: Access illegal memory location

 Consequences

 Core dump

 User-installed exit handler not called

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

PROTECTION & SECURITY

L4.37

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.38

Protection and Security

 Control access to system resources

 Improve reliability

 Defend against use (misuse) by unauthorized or

incompetent users

 Examples

 Ensure process executes within its own space

 Force processes to relinquish control of CPU

 Device-control registers accessible only to the OS

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.39

Buffer overflows:

 When? Program copies data into variable for which it has not

allocated enough space

char buf[80];

printf(“Enter your first name:”);

scanf(“%s”, buf);

If user enters string > 79 bytes ?

 - The string AND string terminator do not fit.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.40

Buffer Overflows:

Fixing the example problem

char buf[80];

printf(“Enter your first name:”);

scanf(“79%s”, buf);

Program now reads at most 79 characters into buf

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.41

Automatic variables (local variables)

 Allocated/deallocated automatically when program

flow enters or leaves the variable’s scope

 Allocated on the program stack

 Stack grows from high-memory to low-memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.42

A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtimes}

{Function parameters,

 return addresses,

 and local variables}

max

0

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.43

A rough anatomy of the program stack

base

top

1024

1000
{Local variables}

{Unused gaps may exist}

{return address}

To align things on the

word boundary

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.44

A function that checks password: Susceptible to

buffer overflow

int checkpass(void) {

 int x;

 char a[9];

 x =0;

 printf(“Enter a short word: ”);

 scanf(“%s”, a);

 if (strcmp(a, “mypass”) == 0)

 x =1;

 return x;

}

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.45

Stack layout for our unsafe function

base

top

1024

1000

a

Unused

return address

saved frame pointer
1020

1016
x

1012

1009

Overflow can
change the value of x

A long password may
overwrite this too

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.46

Problems with buffer overflow

 Function will try to return to address space outside the program

 Segmentation fault or core dump

 Programs may lose unsaved data

 In the OS, such a function can cause the OS to crash!

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.47

One of the greatest security violations of all time:

November 2, 1988

 Exploited 2 bugs in Berkeley UNIX

 Worm: Self replication program

 Bought down most of the Sun and VAX systems on the internet within a

few hours

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.48

Worm had two programs

① Bootstrap (99 lines of C, l1.c)

② Worm proper

 Both these programs compiled and executed on the system under

attack

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.49

Synopsis of the worm’s modus operandi

① Spread the bootstrap to machines

② Once the bootstrap runs:

 Connects back to its origins

 Download worm proper

 Execute worm

③ Worm then attempts to spread bootstrap

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.50

Infecting new machines: Method 1 & 2

Violate trust

 Method 1: Run the remote shell rsh

 Machines used to trust each other, and would willingly run it

 Use this to upload the worm

 Method 2: sendmail

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.51

Method 3: Buffer overflow in the finger daemon

(finger name@site)

 finger daemon runs all the time on sites, and responds to queries

 The worm called finger with a handcrafted 536-byte string as a

parameter.

 Overflowed daemon’s buffer & overwrote its stack

 Daemon did not return to main(), but to a procedure in the 536-bit

string on stack

 Next try to get a shell by executing /bin/sh

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.52

Far too many worms can grind things to a halt

 Break user passwords

 Check for copies of worm on machine

 Exit if there is a copy 6 out of 7 times

◼ This is in place to cope with a situation where sys admin starts fake worm to fool the

real one

 Use of 1 in 7 caused far too worms

 Machines ground to a halt

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.53

Consequences

 $10K fine, 3 years probation and 400 hours community service

 Legal costs $150,000

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L4.54

The contents of the slide-set are based on the

following references

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

 Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.

ISBN: 013359162X/ 978-0133591620 [Chapter 2]

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall

ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

 CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C

by Rink Dewri. Feb 1, 2010. Spring 2010: Instructor: Shrideep Pallickara, GTA: Rinku

Dewri

	Slide 1: CS 370: Operating Systems [Processes]
	Slide 2: Topics covered in this lecture
	Slide 3: Fork() All processes in UNIX are created using the fork() system call.
	Slide 4: fork() results in the creation of 2 distinct processes
	Slide 5: What happens when fork() fails?
	Slide 6: If a system is short on resources OR if limit on number of processes breached
	Slide 7: Take different paths depending on what happens with fork()
	Slide 8: Creating a chain of processes
	Slide 9: Creating a process fan
	Slide 10: Creation of a process tree
	Slide 11: Replacing a process’s memory space with a new program
	Slide 12: Replacing a process’s memory space with a new program
	Slide 13: Launching programs using the shell is a two-step process
	Slide 14: But why is this the case?
	Slide 15: A parent can move itself from off the ready queue and await child’s termination
	Slide 16: wait/waitpid allows caller to suspend execution till a child’s status is available
	Slide 17: Process creation in Windows
	Slide 18: CreateProcess takes up to 10 parameters
	Slide 19: Process Management on Windows
	Slide 20: Process Groups
	Slide 21: Process groups
	Slide 22: Process Group IDs: When a child is created with fork()
	Slide 23: Process groups
	Slide 24: Example: Process tree in Solaris
	Slide 25: Windows has no concept of a process hierarchy
	Slide 26: Process Terminations
	Slide 27: Process terminations
	Slide 28: Process terminations
	Slide 29: Process terminations: This can be either normal or abnormal
	Slide 30: On termination a UNIX process DOES NOT fully release resources until a parent execute a wait() for it
	Slide 31: Zombies and termination
	Slide 32: Normal termination of processes
	Slide 33: The C exit function
	Slide 34: Other things that the exit function does
	Slide 35: More info about the exit functions
	Slide 36: Abnormal termination
	Slide 37: Protection & Security
	Slide 38: Protection and Security
	Slide 39: Buffer overflows:
	Slide 40: Buffer Overflows: Fixing the example problem
	Slide 41: Automatic variables (local variables)
	Slide 42: A process in memory
	Slide 43: A rough anatomy of the program stack
	Slide 44: A function that checks password: Susceptible to buffer overflow
	Slide 45: Stack layout for our unsafe function
	Slide 46: Problems with buffer overflow
	Slide 47: One of the greatest security violations of all time: November 2, 1988
	Slide 48: Worm had two programs
	Slide 49: Synopsis of the worm’s modus operandi
	Slide 50: Infecting new machines: Method 1 & 2 Violate trust
	Slide 51: Method 3: Buffer overflow in the finger daemon (finger name@site)
	Slide 52: Far too many worms can grind things to a halt
	Slide 53: Consequences
	Slide 54: The contents of the slide-set are based on the following references

