CS 370: OPERATING SYSTEMS
[PROCESSES]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2026

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Operations on processes
Creation

Termination
Process groups

Buffer Overflows

One of the greatest security violations of all time

CS370: System Architecture & Software [Fall 2014] L4.2
Dept. Of Computer Science, Colorado State University

FORK()

All processes in UNIX are created using the fork() system call.

fork () results in the creation of 2 distinct processes

Parent child
PID=abc PID=xyz
(_—’-' execute
from here
id = xyz here id = O here
CS370: System Architecture & Software [Fall 2014] L4.4

Dept. Of Computer Science, Colorado State University

What happens when fork () fails?
-

1 No child is created

0 fork () returns =1 and sets errno

DJerrno is a global variable in errno.h

CS370: System Architecture & Software [Fall 201 4] L4.5
Dept. Of Computer Science, Colorado State University

If a system is short on resources OR
if limit on number of processes breached

fork () setserrno to EAGAIN

Some typical numbers for Solaris
maxusers: 2 less than number of MB of physical memory up to 1024
Set up to 2048 manually in /etc/system file

mx nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014] L4.6
Dept. Of Computer Science, Colorado State University

Take different paths depending on what happens

with fork ()
—

childpid = fork();

1f (childpid == -1) {
perror (“Failed to fork”);
return 1;

J

1f (childpid == 0) {
child specific processing
} else {

parent specific processing

Child (any process) can use
getpid () to retrieve

its process ID

CS370: System Architecture & Software [Fall 2014] L4.7
Dept. Of Computer Science, Colorado State University

Creating a chain of processes
B

for (int 1i=1; 1 < 4; 1i++) {
i1f ((childid = fork())) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L4.8
Dept. Of Computer Science, Colorado State University

Creating a process fan
N

for (int 1i=1; 1 < 4; 1i++) {

if ((childid = fork()) == 0) {
break;
}
}
value of i

when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L4.9
Dept. Of Computer Science, Colorado State University

Creation of a process tree
B

int 1=0;
for (i=1; 1 < 4,; i++) {
if ((childid = fork()) == -1) {
break;
}
}

Original process has a 0 label
Value of i when created

"\ Lower case letters: Process created with same i

CS370: System Architecture & Software [Fall 201 4] L4.10
Dept. Of Computer Science, Colorado State University

Replacing a process’s memory space with a new
program

Use exec () after the fork () in one of the two
processes

exec () does the following:

(1) Destroys memory image of program containing the
call

@ Replaces the invoking process’s memory space with a
new program

(3) Allows processes to go their separate ways

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.11

Replacing a process’s memory space with a new

Erogrum
I

= TRADITION:

o1 Child executes new program

o1 Parent executes original code

CS370: System Architecture & Software [Fall 2014] L4.12

Dept. Of Computer Science, Colorado State University

Launching programs using the shell is a two-step

process
——

1 Example: user types sort on the shell

(1) Shell forks off a child process

(2) Child executes sort

CS370: System Architecture & Software [Fall 2014] L4.13
Dept. Of Computer Science, Colorado State University

But why is this the case?

Allows the child to manipulate its file descriptors
After the fork ()

But before the exec ()

Accomplish redirection of standard input, standard
output, and standard error

CS370: System Architecture & Software [Fall 2014] L4.14
Dept. Of Computer Science, Colorado State University

A parent can move itself from off the

reqdz ﬁueue and await child’s termination

-1 Done using the wait () system call.

1 When child process completes, parent process
resumes

parent
resumes

Return value = Non-ZERO
child PID

Return value=ZERO

CS370: System Architecture & Software [Fall 201 4] L4.15
Dept. Of Computer Science, Colorado State University

wait/waitpid allows caller to suspend
execution till a child’s status is available

Process status availability
Most commonly after termination

Also available if process is stopped

waltpid(pid, *stat loc, options)
pid== -1 : any child
pid > 0 :specific child
pid == : any child in the same process group

pid < =1 :any child in process group abs(pid)

CS370: System Architecture & Software [Fall 2014] L4.16
Dept. Of Computer Science, Colorado State University

Process creation in Windows

CreateProcess handles

(1) Process creation

@ Loading in a new program

Parent and child’s address spaces are different from
the start

CS370: System Architecture & Software [Fall 2014] L4.17
Dept. Of Computer Science, Colorado State University

CreateProcess takes up to 10 parameters

Program to be executed

Command line parameters that feed program
Security attributes

Bits that control whether files are inherited
Priority information

Window to be created?

CS370: System Architecture & Software [Fall 2014] L4.18
Dept. Of Computer Science, Colorado State University

Process Management on Windows

S S
= WIN 32 has about 100 other functions

o Managing & Synchronizing processes

CS370: System Architecture & Software [Fall 2014] L4.19
Dept. Of Computer Science, Colorado State University

PROCESS GROUPS

Process groups

Process group is a collection of processes
Each process has a process group ID

Process group leader?

Process with p1d==pgid

kill treats negative pid as pgid

Sends signal to all constituent processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.21

Process Group IDs:
When a child is created with fork ()

(1) Inherits parent’s process group ID

(2) Parent can change group ID of child by using
setpgid

(3) Child can give itself new process group ID

Set process group ID = its process ID

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.22

Process groups

It can contain processes which are:

(1) Parent (and further ancestors)

(2) Siblings
(3) Children (and further descendants)

A process can only send signals to members of its process group

CS370: System Architecture & Software [Fall 2014] L4.23
Dept. Of Computer Science, Colorado State University

Example: Process tree in Solaris
—

CS370: System Architecture & Software [Fall 201 4] L4.24
Dept. Of Computer Science, Colorado State University

Windows has no concept of a process hierarchy

The only hint of a hierarchy?

When a process is created, parent is given a special token (called handle)

Use this to control the child

However, parent is free to pass this token to some other process

Invalidates hierarchy

CS370: System Architecture & Software [Fall 2014] L4.25
Dept. Of Computer Science, Colorado State University

PROCESS TERMINATIONS

Process terminations

Normal exit (voluntary)

E.g. successful compilation of a program

Error exit (voluntary)

E.g. trying to compile a file that does not exist

CS370: System Architecture & Software [Fall 2014] L4.27
Dept. Of Computer Science, Colorado State University

Process terminations

Fatal error (involuntary)

Program bug

Referencing non-existing memory, dividing by zero, etc

Killed by another process (involuntary)

Execute system call telling OS to kill some other process

Killer must be authorized to do the killing of the killee
Unix: kill Win32: TerminateProcess

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.28

Process terminations:
This can be either normal or abnormal

OS deallocates the process resources
Cancel pending timers and signals
Release virtual memory resources and locks

Close any open files

Updates statistics

Process status and resource usage

Notifies parent in response to a wait ()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.29

On termination a UNIX process DOES NOT fully release resources
until a parent execute a wait() for it

When the parent is not waiting when the child terminates?

The process becomes a zombie

Zombie is an inactive process
Still has an entry in the process table

But is already dead, so cannot be killed easily!l ©

Zombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still
active, efc.

CS370: System Architecture & Software [Fall 2014] L4.30
Dept. Of Computer Science, Colorado State University

Zombies and termination

When a process terminates, its orphaned children and
are adopted by a special process
This special system process is 1nit

Some more about the special process 1nit
(1) Has a pid of 1

(2) Periodically executes wait() for children

(3) Children without a parent are adopted by init

B Zombie processes are adopted by init after killing their
parent, then cleaned by the periodic wait()

CS370: System Architecture & Software [Fall 2014] L4.31
Dept. Of Computer Science, Colorado State University

Normal termination of processes

S e
1 Return from main

0 Implicit return from main

=1 Function falls off the end

0 Callto exit, Exit or exit

CS370: System Architecture & Software [Fall 2014] L4.32
Dept. Of Computer Science, Colorado State University

The C ex1t function

Call user-defined exit handlers that were registered by the atexit

Invocation is in reverse order of registration

Execute the function pointed by func when process terminates

#include <stdlib.h>

int atexit(void (*func) ())

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.33

Other things that the ex 1t function does

Flushes any open streams that have unwritten buffered data
Closes all open streams

Remove all temporary files
Created by tmpfile ()

CS370: System Architecture & Software [Fall 2014] L4.34
Dept. Of Computer Science, Colorado State University

More info about the exit functions

_Exit and exit do not call user-defined exit handlers

POSIX does not specify what happens

All functions (ex1t, Exit and exit)take a parameter: status
Indicates termination status of program
0 is a successful termination

Non-ZERO values: Programmer defined errors

CS370: System Architecture & Software [Fall 2014] L4.35
Dept. Of Computer Science, Colorado State University

Abnormal termination

Call abort

Process signal that causes termination
Generated by an external event: keyboard Ctr1-C

Internal errors: Access illegal memory location

Consequences

Core dump

User-installed exit handler not called

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.36

PROTECTION & SECURITY

Protection and Security

Control access to system resources

Improve reliability

Defend against use (misuse) by unauthorized or
incompetent users

Examples

Ensure process executes within its own space
Force processes to relinquish control of CPU

Device-control registers accessible only to the OS

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.38

Buffer overflows:

If

When? Program copies data into variable for which it has not
allocated enough space

char buf[80];
printf (“Enter your first name:”);

scanft (“%s”, buf);

user enters string > 79 bytes ¢
- The string AND string terminator do not fit.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.39

Buffer Overflows:

Fixing th | bl
_ Fixing the example problem

char buf[80];
printf ("Enter your first name:"”);
scanf (“79%s”, buf);

Program now reads at most 79 characters into buft

CS370: System Architecture & Software [Fall 2014] L4.40
Dept. Of Computer Science, Colorado State University

Automatic variables (local variables)

Allocated /deallocated automatically when program
flow enters or leaves the variable’s scope

Allocated on the program stack

Stack grows from high-memory to low-memory

CS370: System Architecture & Software [Fall 2014] L4.41
Dept. Of Computer Science, Colorado State University

A process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtimes}

{Global variables}

{Program code}

CS370: System Architecture & Software [Fall 201 4] L4.42
Dept. Of Computer Science, Colorado State University

A rough anatomy of the program stack
N

base 1024

To align things on the

& word boundary

top 1000

CS370: System Architecture & Software [Fall 201 4] L4.43
Dept. Of Computer Science, Colorado State University

A function that checks password: Susceptible to

buffer overflow
5
int checkpass (void) {
int x;
char al[9];
x =0;
printf (“Enter a short word: ”);
scanf (“%s”, a);
1f (strcmp(a, “mypass”) == 0)
X =1;

return Xx;

CS370: System Architecture & Software [Fall 2014] L4.44
Dept. Of Computer Science, Colorado State University

Stack layout for our unsafe function
N

1024
base A long password may
1020 overwrite this too

1016

Overflow can
change the value of x 1012
1009
top 1000

CS370: System Architecture & Software [Fall 201 4]

L4.45
Dept. Of Computer Science, Colorado State University

Problems with buffer overflow

Function will try to return to address space outside the program
Segmentation fault or core dump
Programs may lose unsaved data

In the OS, such a function can cause the OS to crash!

CS370: System Architecture & Software [Fall 2014] L4.46
Dept. Of Computer Science, Colorado State University

One of the greatest security violations of all time:
November 2, 1988

Exploited 2 bugs in Berkeley UNIX

Worm: Self replication program

Bought down most of the Sun and VAX systems on the internet within a

few hours

CS370: System Architecture & Software [Fall 2014] L4.47
Dept. Of Computer Science, Colorado State University

Worm had two programs

(1) Bootstrap (99 lines of C, 11.c)

(2) Worm proper

Both these programs compiled and executed on the system under
attack

CS370: System Architecture & Software [Fall 2014] L4.48
Dept. Of Computer Science, Colorado State University

Synopsis of the worm’s modus operandi

(1) Spread the bootstrap to machines

(2) Once the bootstrap runs:
Connects back to its origins
Download worm proper

Execute worm

(3) Worm then attempts to spread bootstrap

CS370: System Architecture & Software [Fall 2014] L4.49
Dept. Of Computer Science, Colorado State University

Infecting new machines: Method 1 & 2
Violate trust

Method 1: Run the remote shell rsh

Machines used to trust each other, and would willingly run it

Use this to upload the worm

Method 2: sendmail

CS370: System Architecture & Software [Fall 2014] L4.50
Dept. Of Computer Science, Colorado State University

Method 3: Buffer overflow in the f1nger daemon
(finger name@site)
finger daemon runs all the time on sites, and responds to queries

The worm called £inger with a handcrafted 536-byte string as a
parameter.

Overflowed daemon’s buffer & overwrote its stack

Daemon did not return to main (), but to a procedure in the 536-bit

string on stack

Next try to get a shell by executing /bin/sh

CS370: System Architecture & Software [Fall 2014] L4.51
Dept. Of Computer Science, Colorado State University

Far too many worms can grind things to a halt

Break user passwords

Check for copies of worm on machine

Exit if there is a copy 6 out of 7 times

This is in place to cope with a situation where sys admin starts fake worm to fool the
real one

Use of 1 in 7 caused far too worms

Machines ground to a halt

CS370: System Architecture & Software [Fall 2014] L4.52
Dept. Of Computer Science, Colorado State University

Consequences

$10K fine, 3 years probation and 400 hours community service

Legal costs $150,000

CS370: System Architecture & Software [Fall 2014] L4.53
Dept. Of Computer Science, Colorado State University

The contents of the slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620 [Chapter 2]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C

by Rink Dewri. Feb 1, 2010. Spring 2010: Instructor: Shrideep Pallickara, GTA: Rinku
Dewri

CS370: System Architecture & Software [Fall 2014] L4.54
Dept. Of Computer Science, Colorado State University

	Slide 1: CS 370: Operating Systems [Processes]
	Slide 2: Topics covered in this lecture
	Slide 3: Fork() All processes in UNIX are created using the fork() system call.
	Slide 4: fork() results in the creation of 2 distinct processes
	Slide 5: What happens when fork() fails?
	Slide 6: If a system is short on resources OR if limit on number of processes breached
	Slide 7: Take different paths depending on what happens with fork()
	Slide 8: Creating a chain of processes
	Slide 9: Creating a process fan
	Slide 10: Creation of a process tree
	Slide 11: Replacing a process’s memory space with a new program
	Slide 12: Replacing a process’s memory space with a new program
	Slide 13: Launching programs using the shell is a two-step process
	Slide 14: But why is this the case?
	Slide 15: A parent can move itself from off the ready queue and await child’s termination
	Slide 16: wait/waitpid allows caller to suspend execution till a child’s status is available
	Slide 17: Process creation in Windows
	Slide 18: CreateProcess takes up to 10 parameters
	Slide 19: Process Management on Windows
	Slide 20: Process Groups
	Slide 21: Process groups
	Slide 22: Process Group IDs: When a child is created with fork()
	Slide 23: Process groups
	Slide 24: Example: Process tree in Solaris
	Slide 25: Windows has no concept of a process hierarchy
	Slide 26: Process Terminations
	Slide 27: Process terminations
	Slide 28: Process terminations
	Slide 29: Process terminations: This can be either normal or abnormal
	Slide 30: On termination a UNIX process DOES NOT fully release resources until a parent execute a wait() for it
	Slide 31: Zombies and termination
	Slide 32: Normal termination of processes
	Slide 33: The C exit function
	Slide 34: Other things that the exit function does
	Slide 35: More info about the exit functions
	Slide 36: Abnormal termination
	Slide 37: Protection & Security
	Slide 38: Protection and Security
	Slide 39: Buffer overflows:
	Slide 40: Buffer Overflows: Fixing the example problem
	Slide 41: Automatic variables (local variables)
	Slide 42: A process in memory
	Slide 43: A rough anatomy of the program stack
	Slide 44: A function that checks password: Susceptible to buffer overflow
	Slide 45: Stack layout for our unsafe function
	Slide 46: Problems with buffer overflow
	Slide 47: One of the greatest security violations of all time: November 2, 1988
	Slide 48: Worm had two programs
	Slide 49: Synopsis of the worm’s modus operandi
	Slide 50: Infecting new machines: Method 1 & 2 Violate trust
	Slide 51: Method 3: Buffer overflow in the finger daemon (finger name@site)
	Slide 52: Far too many worms can grind things to a halt
	Slide 53: Consequences
	Slide 54: The contents of the slide-set are based on the following references

