
CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[INTER PROCESS COMMUNICATIONS]

Computer Science

Colorado State University

L5.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.2

Creating a chain of processes

for (int i=1; i < 4; i++) {

 if ((childid = fork())) {

 break;

 }

}

For each iteration:

Parent has non-ZERO childid

 So it breaks out

Child process

 Parent in NEXT iteration

1

2

3

4

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.3

Creating a process fan

for (int i=1; i < 4; i++) {

 if ((childid = fork()) <= 0) {

 break;

 }

}
Newly created process breaks out

Original process continues
4

1
2 3

value of i

when process leaves loop

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.4

Making Sure Conditionals in C are Clear

for (int i=1; i < 4; i++) {

 if ((childid = fork()) <= 0) {

 break;

 }

}

for (int i=1; i < 4; i++) {

 if ((childid = fork())) {

 break;

 }

}

for (int i=1; i < 4; i++) {

 if ((childid = fork()) != 0) {

 break;

 }

}

for (int i=1; i < 4; i++) {

 if ((childid = fork()) > 0) {

 break;

 }

}

Conditional is true when fork() returns non-

zero value (so, fail or parent)

Conditional is true when fork() returns

negative or zero value (so, fail or parent)

Conditional is true when fork()

returns positive value (so, child)

Conditional is true when fork() returns non-

zero value (so, -1, 42, etc.: fail or parent)

fork() == -1 is a failure, break executed by parent, no child

fork() == 0 is a success, break executed by child

fork() > 0 is a success, break executed by parent

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.5

Topics covered in this lecture

 Shells and Daemons

 POSIX

 Inter Process Communications

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

SHELLS AND DAEMONS

L5.6

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.7

Shell: Command interpreter

 Prompts for commands

 Reads commands from standard input

 Forks children to execute commands

 Waits for children to finish

 When standard I/O comes from terminal

 Terminate command with the interrupt character

◼ Default Ctrl-C

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.8

Background processes and daemons

 Shell interprets commands ending with & as a background process

 No waiting for process to complete

 Issue prompt immediately

◼ Accept new commands

 Ctrl-C has no effect, but Shell commands to manipulate processes (fg, bg)

 Daemon is a background process

 Runs “indefinitely”: not dependent on Shell termination

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

POSIX

L5.9

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.10

Portable Operating Systems Interface for UNIX

(POSIX)

 2 distinct, incompatible flavors of UNIX existed

 System V from AT&T

 BSD UNIX from Berkeley

 Programs written from one type of UNIX

 Did not run correctly (sometimes even compile) on UNIX from another vendor

 Pronounced pahz-icks

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.11

IEEE attempt to develop a standard for UNIX

libraries

 POSIX.1 published in 1988

 Covered a small subset of UNIX

 In 1994, X/Open Foundation had

 Much more comprehensive effort

◼ Called Spec 1170

 Based on System V

 Inconsistencies between POSIX.1 and Spec 1170

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.12

The path to the final POSIX standard

 1998

 Another version of the X/Open standard

 Many additions to POSIX.1

 Austin Group formed

◼ Open Group, IEEE POSIX, and ISO/IEC tech committee

◼ International Standards Organization (ISO)

◼ International Electrotechnical Commission (IEC)

◼ Revise, combine and update standards

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.13

The path to the final POSIX standard:

Joint document

 Approved by IEEE & Open Group

 End of 2001

 ISO/IEC approved it in November 2002

 Single UNIX spec

 Version 3, IEEE Standard 1003.1-2001

 POSIX

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.14

If you write for POSIX-compliant systems

 No need to contend with small, but critical variations in library

functions

 Across platforms

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS

(IPC)

L5.15

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.16

Independent and Cooperating processes

 Independent: CANNOT affect or be affected by other processes

 Cooperating: CAN affect or be affected by other processes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.17

Why have cooperating processes?

 Information sharing: shared files

 Computational speedup

 Sub tasks for concurrency

 Modularity

 Convenience: Do multiple things in parallel

 Privilege separation

 Etc.

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.18

Cooperating processes need IPC to exchange data

and information

 Shared memory

 Establish memory region to be shared

 Read and write to the shared region

 Message passing

 Communications through message exchange

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.19

Contrasting the two IPC approaches

process A

process B

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement

Best for small amounts of data

Kernel intervention for communications

Maximum speed

System calls to establish shared memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.20

Shared memory systems

 Shared memory resides in the address space of process creating it

 Other processes must attach segment to their address space

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.21

Using shared memory

 But the OS typically prevents processes from accessing each other’s

memory, so …

① Processes must agree to remove this restriction

② Processes also coordinate access to this region

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.22

Let’s look a little closer at cooperating processes

 Producer-consumer problem is a good exemplar of such cooperation

 Producer process produces information

 Consumer process consumes this information

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.23

One solution to the producer-consumer problem uses

shared-memory

 Buffer is a shared-memory region for the 2 processes

 Buffer needed to allow producer & consumer to run concurrently

 Producer fills it

 Consumer empties it

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.24

Buffers and sizes

 Bounded: Assume fixed size

 Consumer waits if empty

 Producer waits if full

 Unbounded: Unlimited number of entries

 Only the consumer waits WHEN buffer is empty

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.25

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position (consumer)

{in=0, out=0}

{in=1, out=0}

{in=2, out=0}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.26

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position (consumer)

{in=2, out=1}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.27

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position (consumer)

{in=2, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

After consuming

in == out

Buffer is EMPTY

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.28

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position (consumer)

{in=3, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=4, out=2}

{in=1, out=2}

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.29

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position (consumer)

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=2, out=2}

After producing:

(in+1)%BUFFER_SIZE==out

Buffer is FULL

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS

SHARED MEMORY

L5.30

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.31

POSIX IPC: Shared Memory

Creating a memory segment to share

 First create shared memory segment shmget()

shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR)

▪ IPC_PRIVATE: key for the segment

▪ size: size of the shared memory

▪ S_IRUSR|S_IWUSR: Mode of access (read, write)

 Successful invocation of shmget()

 Returns integer ID of shared segment

◼ Needed by other processes that want to use region

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.32

Processes wishing to use shared memory

must first attach it to their address space

 Done using shmat(): SHared Memory ATtach

 Returns pointer to beginning location in memory

 (char *) shmat(id, asmP, mode)

▪ id: Integer ID of memory segment being attached

▪ asmP: Pointer location to attach shared memory

▪ NULL allows OS to select location for you

▪ Mode indicating read-only or read-write

▪ 0: reads and writes to shared memory

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.33

IPC: Use of the created shared memory

 Once shared memory is attached to the process’s

address space

 Routine memory accesses using * from shmat()

◼ Write to it

◼ sprintf(shared_memory, “Hello”);

◼ Print string from memory

◼ printf(“*%\n”, shared_memory);

 RULE: First attach, and then access

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.34

IPC Shared Memory:

What to do when you are done

① Detach from the address space.

▪ shmdt() :SHared Memory DeTtach

▪ shmdt(shared_memory)

② To remove a shared memory segment

▪ shmctl() : SHared Memory ConTroL operation

◼ Specify the segment ID to be removed

◼ Specify operation to be performed: IPC_RMID

◼ Pointer to the shared memory region

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS

MESSAGE PASSING

L5.35

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.36

Communicate and synchronize actions

without sharing the same address space

 Useful in distributed environments (e.g., Message Passing Interface)

 Two main operations

 send(message)

 receive(message)

 Message sizes can be:

 Fixed: Easy

 Variable: Little more effort

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.37

Communications between processes

 There needs to be a communication link

 Underlying physical implementation

 Shared memory

 Hardware bus

 Network

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.38

Aspects to consider for IPC

① Communications

 Direct or indirect

② Synchronization

 Synchronous or asynchronous

③ Buffering

 Automatic or explicit buffering

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.39

Naming allows processes to refer to each other

 Processes use each other’s identity to communicate

 Communications can be

 Direct

 Indirect

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.40

Direct communications

 Explicitly name recipient or sender

 Link is established automatically

 Exactly one link between the 2 processes

 Addressing

 Symmetric

 Asymmetric

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.41

Direct Communications:

Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing

• send(P, message)

• receive(Q, message)

• Asymmetric addressing

– send(P, message)

– receive(id, message)

• Variable id set to name of the sending process

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.42

Direct Communications: Disadvantages

 Limited modularity of process definitions

 Cascading effects of changing the identifier of process

 Examine all other process definitions

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.43

Indirect communications: Message sent and received

from mailboxes (ports)

 Each mailbox has a unique identification & owner

 POSIX message queues use integers to identify

mailboxes

 Processes communicate only if they have shared

mailbox

 send(A, message)

 receive(A, message)

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.44

Indirect communications: Link properties

 Link established only if both members share mailbox

 Link may be associated with more than two processes

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.45

Indirect communications

 Processes P1, P2 and P3 share mailbox A

 P1 sends a message to A

 P2, P3 execute a receive() from A

 Possibilities? Allow …

① Link to be associated with at most 2 processes

② At most 1 process to execute receive() at a time

③ System to arbitrarily select who gets message

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.46

Mailbox ownership: Owned by OS

 Mailbox has its own existence

 Mailbox is independent

 Not attached to any process

 OS must allow processes to

 Create mailbox

 Send and receive through the mailbox

 Delete mailbox

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.47

Message passing: Synchronization issues

Options for implementing primitives

 Blocking send

 Block until received by process or mailbox

 Nonblocking send

 Send and promptly resume other operations

 Blocking receive

 Block until message available

 Nonblocking receive

 Retrieve valid message or null

 Producer-Consumer problem: Easy with blocking

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.48

Message Passing: Buffering

 Messages exchanged by communicating processes reside in a

temporary queue

 Implementation schemes for queues

 ZERO Capacity

 Bounded

 Unbounded

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.49

Message Passing Buffer:

Consumer always has to wait for message

 ZERO capacity: No messages can reside in queue

 Sender must block till recipient receives

 BOUNDED: At most n messages can reside in queue

 Sender blocks only if queue is full

 UNBOUNDED: Queue length potentially infinite

 Sender never blocks

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

MICROKERNELS

L5.50

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.51

The Microkernel Approach [1/2]

 Mid 1980’s at Carnegie Mellon University

 Mach

 Structure OS by removing non-essential components from the kernel

 Implement other things as system/user programs

 Provide minimal process and memory management

 Main function: Provide communication facility between client and

services

 Message passing

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.52

The Microkernel Approach [2/2]

 Traditionally all the layers went in the kernel

 But this is not really necessary

 In fact, it may be best to put as little as possible in the kernel

 Bugs in the kernel can bring down the system instantly

 Contrast this with setting up user processes to have less power

 A bug may not be fatal

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.53

Getting there …

 Achieve high reliability by splitting OS in small, well-defined modules

 One of these, the microkernel, runs in the kernel mode

 The rest as relatively powerless ordinary user processes

 Running each device driver as a separate process?

 Bugs cannot crash the entire system

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.54

Communications in the micro-kernel

 Client and service never interact directly

 Indirect communications by exchanging messages with the microkernel

 Advantages

 Easier to port to different hardware

 More security and reliability

◼ Most services run as user, rather than kernel

 Mac OS X kernel based on Mach microkernel

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.55

Increased system function overhead can degrade

microkernel performance

 Windows NT: First release, layered microkernel

 Lower performance than Windows 95

 Windows NT 4.0 solution

 Move layers from user space to kernel space

 By the time Windows XP came around

 More monolithic than microkernel

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.56

IPC communications: Mach

 Tasks are similar to processes

 Multiple threads of control

 Most communications in Mach use messages

 System calls

 Inter-task information

 Sent and received from mailboxes: ports

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.57

Mach: Task creation and mailboxes

 Task creation results in 2 more mailboxes

① Kernel mailbox: Used by kernel to communicate with task

② Notify mailbox: Notification of event occurrences

 System calls for communications

 msg_send(), msg_receive() and msg_rpc()

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.58

Mach:

Mailbox creation

 Done using the port_allocate()

 Allocate space for message queue

◼ MAX_SIZE default is 8 messages

 Creator is owner and can also receive

 Only task can own/receive from mailbox

 BUT these rights can be sent to other tasks

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.59

Mach:

Message queue ordering

 FIFO guarantees for messages from same sender

 Messages from multiple senders queued in any order

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.60

Mach: Send and receive operations

 If mailbox is not full, copy message

 If mailbox is FULL

① Wait indefinitely till there’s room

② Wait at most n milliseconds

◼ Don’t wait, simply return

③ Temporarily cache the message

◼ Only 1 message to a full mailbox can be pending for a given sending thread

 Receive can specify mailbox or mailbox set

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.61

Another idea related to microkernels

 Put mechanisms for doing something in the kernel

 But not the policy

 Example: Scheduling

 Policy of assigning priorities to processes can be done in the user-mode

 The mechanism to look for the highest priority process and schedule it is in

the kernel

CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.62

The contents of this slide-set are based on the

following references

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall

ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

 Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.

ISBN: 013359162X/ 978-0133591620. [Chapter 2]

	Slide 1: CS 370: Operating Systems [Inter Process Communications]
	Slide 2: Creating a chain of processes
	Slide 3: Creating a process fan
	Slide 4: Making Sure Conditionals in C are Clear
	Slide 5: Topics covered in this lecture
	Slide 6: Shells and Daemons
	Slide 7: Shell: Command interpreter
	Slide 8: Background processes and daemons
	Slide 9: POSIX
	Slide 10: Portable Operating Systems Interface for Unix (POSIX)
	Slide 11: IEEE attempt to develop a standard for Unix libraries
	Slide 12: The path to the final POSIX standard
	Slide 13: The path to the final POSIX standard: Joint document
	Slide 14: If you write for POSIX-compliant systems
	Slide 15: Inter Process Communications (IPC)
	Slide 16: Independent and Cooperating processes
	Slide 17: Why have cooperating processes?
	Slide 18: Cooperating processes need IPC to exchange data and information
	Slide 19: Contrasting the two IPC approaches
	Slide 20: Shared memory systems
	Slide 21: Using shared memory
	Slide 22: Let’s look a little closer at cooperating processes
	Slide 23: One solution to the producer-consumer problem uses shared-memory
	Slide 24: Buffers and sizes
	Slide 25: Circular buffer: Bounded
	Slide 26: Circular buffer: Bounded
	Slide 27: Circular buffer: Bounded
	Slide 28: Circular buffer: Bounded
	Slide 29: Circular buffer: Bounded
	Slide 30: Inter Process Communications Shared Memory
	Slide 31: POSIX IPC: Shared Memory Creating a memory segment to share
	Slide 32: Processes wishing to use shared memory must first attach it to their address space
	Slide 33: IPC: Use of the created shared memory
	Slide 34: IPC Shared Memory: What to do when you are done
	Slide 35: Inter Process Communications Message Passing
	Slide 36: Communicate and synchronize actions without sharing the same address space
	Slide 37: Communications between processes
	Slide 38: Aspects to consider for IPC
	Slide 39: Naming allows processes to refer to each other
	Slide 40: Direct communications
	Slide 41: Direct Communications: Addressing
	Slide 42: Direct Communications: Disadvantages
	Slide 43: Indirect communications: Message sent and received from mailboxes (ports)
	Slide 44: Indirect communications: Link properties
	Slide 45: Indirect communications
	Slide 46: Mailbox ownership: Owned by OS
	Slide 47: Message passing: Synchronization issues Options for implementing primitives
	Slide 48: Message Passing: Buffering
	Slide 49: Message Passing Buffer: Consumer always has to wait for message
	Slide 50: Microkernels
	Slide 51: The Microkernel Approach [1/2]
	Slide 52: The Microkernel Approach [2/2]
	Slide 53: Getting there …
	Slide 54: Communications in the micro-kernel
	Slide 55: Increased system function overhead can degrade microkernel performance
	Slide 56: IPC communications: Mach
	Slide 57: Mach: Task creation and mailboxes
	Slide 58: Mach: Mailbox creation
	Slide 59: Mach: Message queue ordering
	Slide 60: Mach: Send and receive operations
	Slide 61: Another idea related to microkernels
	Slide 62: The contents of this slide-set are based on the following references

