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Creating a chain of processes

for (int i=1; i < 4; i++) {

   if ((childid = fork())) {

       break;

   }

}

For each iteration:

Parent has non-ZERO childid

    So it breaks out

Child process 

    Parent in NEXT iteration
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when process leaves loop
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Creating a process fan

for (int i=1; i < 4; i++) {

   if ((childid = fork()) <= 0) {

       break;

   }

}
Newly created process breaks out

Original process continues
4

1
2 3

value of i

when process leaves loop
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Making Sure Conditionals in C are Clear

for (int i=1; i < 4; i++) {

   if ((childid = fork()) <= 0) {

       break;

   }

}

for (int i=1; i < 4; i++) {

   if ((childid = fork())) {

       break;

   }

}

for (int i=1; i < 4; i++) {

   if ((childid = fork()) != 0) {

       break;

   }

}

for (int i=1; i < 4; i++) {

   if ((childid = fork()) > 0) {

       break;

   }

}

Conditional is true when fork() returns non-

zero value (so, fail or parent) 

Conditional is true when fork() returns 

negative or zero value (so, fail or parent)

Conditional is true when fork() 

returns positive value (so, child)

Conditional is true when fork() returns non-

zero value (so, -1, 42, etc.: fail or parent)

fork() == -1 is a failure, break executed by parent, no child

fork() == 0 is a success, break executed by child

fork() > 0 is a success, break executed by parent 
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Topics covered in this lecture

 Shells and Daemons

 POSIX

 Inter Process Communications
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Shell: Command interpreter

 Prompts for commands

 Reads commands from standard input

 Forks children to execute commands

 Waits for children to finish

 When standard I/O comes from terminal

 Terminate command with the interrupt character

◼ Default Ctrl-C
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Background processes and daemons

 Shell interprets commands ending with & as a background process

 No waiting for process to complete

 Issue prompt immediately

◼ Accept new commands

 Ctrl-C has no effect, but Shell commands to manipulate processes (fg, bg)

 Daemon is a background process

 Runs “indefinitely”: not dependent on Shell termination
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Portable Operating Systems Interface for UNIX 

(POSIX)

 2 distinct, incompatible flavors of UNIX existed

 System V from AT&T

 BSD UNIX from Berkeley

 Programs written from one type of UNIX

 Did not run correctly (sometimes even compile) on UNIX from another vendor

 Pronounced pahz-icks
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IEEE attempt to develop a standard for UNIX 

libraries

 POSIX.1 published in 1988

 Covered a small subset of UNIX

 In 1994, X/Open Foundation had

 Much more comprehensive effort

◼ Called Spec 1170

 Based on System V

 Inconsistencies between POSIX.1 and Spec 1170
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The path to the final POSIX standard

 1998

 Another version of the X/Open standard

 Many additions to POSIX.1

 Austin Group formed

◼ Open Group, IEEE POSIX, and ISO/IEC tech committee

◼ International Standards Organization (ISO)

◼ International Electrotechnical Commission (IEC)

◼ Revise, combine and update standards
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The path to the final POSIX standard:

Joint document

 Approved by IEEE & Open Group

 End of 2001

 ISO/IEC approved it in November 2002

 Single UNIX spec

 Version 3, IEEE Standard 1003.1-2001

 POSIX
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If you write for POSIX-compliant systems

 No need to contend with small, but critical variations in library 

functions

 Across platforms
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Independent and Cooperating processes

 Independent: CANNOT affect or be affected by other processes

 Cooperating: CAN affect or be affected by other processes
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Why have cooperating processes?

 Information sharing: shared files

 Computational speedup

 Sub tasks for concurrency

 Modularity 

 Convenience: Do multiple things in parallel

 Privilege separation

 Etc.
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Cooperating processes need IPC to exchange data 

and information

 Shared memory

 Establish memory region to be shared

 Read and write to the shared region

 Message passing

 Communications through message exchange
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Contrasting the two IPC approaches

process A

process B 

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement

Best for small amounts of data

Kernel intervention for communications

Maximum speed

System calls to establish shared memory
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Shared memory systems

 Shared memory resides in the address space of process creating it

 Other processes must attach segment to their address space
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Using shared memory

 But the OS typically prevents processes from accessing each other’s 

memory, so …

①  Processes must agree to remove this restriction

②  Processes also coordinate access to this region
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Let’s look a little closer at cooperating processes

 Producer-consumer problem is a good exemplar of such cooperation 

 Producer process produces information

 Consumer process consumes this information
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One solution to the producer-consumer problem uses 

shared-memory

 Buffer is a shared-memory region for the 2 processes

 Buffer needed to allow producer & consumer to run concurrently

 Producer fills it

 Consumer empties it 
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Buffers and sizes

 Bounded: Assume fixed size

 Consumer waits if empty

 Producer waits if full

 Unbounded: Unlimited number of entries

 Only the consumer waits WHEN buffer is empty
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Circular buffer: Bounded

0
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in: next free position (producer)

out: first full position  (consumer)

{in=0, out=0}

{in=1, out=0}

{in=2, out=0}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE
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Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position  (consumer)

{in=2, out=1}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE
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Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position  (consumer)

{in=2, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

After consuming

in == out

Buffer is EMPTY
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Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position  (consumer)

{in=3, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=4, out=2}

{in=1, out=2}
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Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)

out: first full position  (consumer)

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=2, out=2}

After producing:

(in+1)%BUFFER_SIZE==out

Buffer is FULL
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POSIX IPC: Shared Memory

Creating a memory segment to share

 First create shared memory segment shmget()

shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR)

▪ IPC_PRIVATE: key for the segment

▪ size: size of the shared memory

▪ S_IRUSR|S_IWUSR: Mode of access (read, write)

 Successful invocation of  shmget()

 Returns integer ID of shared segment

◼ Needed by other processes that want to use region
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Processes wishing to use shared memory 

must first attach it to their address space

 Done using shmat(): SHared Memory ATtach

 Returns pointer to beginning location in memory

 (char *) shmat(id, asmP, mode)

▪ id: Integer ID of memory segment being attached

▪ asmP: Pointer location to attach shared memory

▪ NULL allows OS to select location for you

▪ Mode indicating read-only or read-write 

▪ 0: reads and writes to shared memory
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IPC: Use of the created shared memory

 Once shared memory is attached to the process’s 

address space

 Routine memory accesses using * from shmat()

◼ Write to it 

◼ sprintf(shared_memory, “Hello”);

◼ Print string from memory

◼ printf(“*%\n”, shared_memory); 

 RULE: First attach, and then access
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IPC Shared Memory:

What to do when you are done

① Detach from the address space. 

▪ shmdt() :SHared Memory DeTtach 

▪ shmdt(shared_memory)

② To remove a shared memory segment

▪ shmctl() : SHared Memory ConTroL operation 

◼ Specify the segment ID to be removed

◼ Specify operation to be performed: IPC_RMID

◼ Pointer to the shared memory region
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Communicate and synchronize actions 

without sharing the same address space

 Useful in distributed environments (e.g., Message Passing Interface)

 Two main operations

 send(message)

 receive(message)

 Message sizes can be:

 Fixed: Easy

 Variable: Little more effort
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Communications between processes

 There needs to be a communication link

 Underlying physical implementation

 Shared memory

 Hardware bus

 Network
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Aspects to consider for IPC

① Communications

 Direct or indirect

② Synchronization

 Synchronous or asynchronous

③ Buffering

 Automatic or explicit buffering
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Naming allows processes to refer to each other

 Processes use each other’s identity to communicate

 Communications can be

 Direct

 Indirect
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Direct communications

 Explicitly name recipient or sender 

 Link is established automatically 

 Exactly one link between the 2 processes

 Addressing

 Symmetric 

 Asymmetric 
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Direct Communications:

Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing

• send(P, message)

• receive(Q, message)

• Asymmetric addressing

– send(P, message)

– receive(id, message)

• Variable id set to name of the sending process
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Direct Communications: Disadvantages

 Limited modularity of process definitions

 Cascading effects of changing the identifier of process

 Examine all other process definitions
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Indirect communications: Message sent and received 

from mailboxes (ports)

 Each mailbox has a unique identification & owner 

 POSIX message queues use integers to identify 

mailboxes

 Processes communicate only if they have shared 

mailbox

 send(A, message)

 receive(A, message)
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Indirect communications: Link properties

 Link established only if both members share mailbox

 Link may be associated with more than two processes
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Indirect communications

 Processes P1, P2 and P3 share mailbox A

 P1 sends a message to A

 P2, P3 execute a receive() from A

 Possibilities? Allow …

①  Link to be associated with at most 2 processes

②  At most 1 process to execute receive() at a time

③  System to arbitrarily select who gets message 
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Mailbox ownership: Owned by OS

 Mailbox has its own existence

 Mailbox is independent

 Not attached to any process

 OS must allow processes to

 Create mailbox

 Send and receive through the mailbox

 Delete mailbox
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Message passing: Synchronization issues

Options for implementing primitives

 Blocking send

 Block until received by process or mailbox

 Nonblocking send

 Send and promptly resume other operations

 Blocking receive

 Block until message available

 Nonblocking receive

 Retrieve valid message or null

 Producer-Consumer problem: Easy with blocking
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Message Passing: Buffering

 Messages exchanged by communicating processes reside in a 

temporary queue

 Implementation schemes for queues

 ZERO Capacity

 Bounded

 Unbounded
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Message Passing Buffer:

Consumer always has to wait for message

 ZERO capacity: No messages can reside in queue

 Sender must block till recipient receives

 BOUNDED: At most n messages can reside in queue

 Sender blocks only if queue is full

 UNBOUNDED: Queue length potentially infinite

 Sender never blocks
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The Microkernel Approach           [1/2]

 Mid 1980’s at Carnegie Mellon University

 Mach

 Structure OS by removing non-essential components from the kernel

 Implement other things as system/user programs

 Provide minimal process and memory management

 Main function: Provide communication facility between client and 

services

 Message passing
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The Microkernel Approach           [2/2]

 Traditionally all the layers went in the kernel

 But this is not really necessary

 In fact, it may be best to put as little as possible in the kernel

 Bugs in the kernel can bring down the system instantly

 Contrast this with setting up user processes to have less power

 A bug may not be fatal



CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L5.53

Getting there …

 Achieve high reliability by splitting OS in small, well-defined modules

 One of these, the microkernel, runs in the kernel mode

 The rest as relatively powerless ordinary user processes

 Running each device driver as a separate process?

 Bugs cannot crash the entire system
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Communications in the micro-kernel

 Client and service never interact directly

 Indirect communications by exchanging messages with the microkernel

 Advantages

 Easier to port to different hardware

 More security and reliability

◼ Most services run as user, rather than kernel

 Mac OS X kernel based on Mach microkernel
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Increased system function overhead can degrade 

microkernel performance

 Windows NT: First release, layered microkernel

 Lower performance than Windows 95

 Windows NT 4.0 solution

 Move layers from user space to kernel space

 By the time Windows XP came around

 More monolithic than microkernel
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IPC communications: Mach

 Tasks are similar to processes

 Multiple threads of control

 Most communications in Mach use messages

 System calls

 Inter-task information

 Sent and received from mailboxes: ports
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Mach: Task creation and mailboxes

 Task creation results in 2 more mailboxes

①  Kernel mailbox: Used by kernel to communicate with task

②  Notify mailbox: Notification of event occurrences

 System calls for communications

 msg_send(), msg_receive() and msg_rpc()
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Mach: 

Mailbox creation

 Done using the port_allocate() 

 Allocate space for message queue

◼ MAX_SIZE default is 8 messages

 Creator is owner and can also receive

 Only task can own/receive from mailbox

 BUT these rights can be sent to other tasks
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Mach: 

Message queue ordering

 FIFO guarantees for messages from same sender

 Messages from multiple senders queued in any order
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Mach: Send and receive operations

 If mailbox is not full, copy message

 If mailbox is FULL

① Wait indefinitely till there’s room

② Wait at most n milliseconds

◼ Don’t wait, simply return

③ Temporarily cache the message

◼ Only 1 message to a full mailbox can be pending for a given sending thread 

 Receive can specify mailbox or mailbox set
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Another idea related to microkernels

 Put mechanisms for doing something in the kernel

 But not the policy

 Example: Scheduling

 Policy of assigning priorities to processes can be done in the user-mode

 The mechanism to look for the highest priority process and schedule it is in 

the kernel
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The contents of this slide-set are based on the 

following references

 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

 Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 

ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

 Andrew S Tanenbaum. Modern Operating Systems. 4th  Edition, 2014. Prentice Hall. 

ISBN: 013359162X/ 978-0133591620. [Chapter 2]
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