CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2026

** Lecture slides created by: SHRIDEEP PALLICKARA

Creating a chain of processes
B

for (int 1i=1; 1 < 4; 1i++) {
i1f ((childid = fork())) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L5.2
Dept. Of Computer Science, Colorado State University

Creating a process fan
N

for (int 1i=1; 1 < 4; 1i++) {
i1f ((childid = fork()) <= 0) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L5.3
Dept. Of Computer Science, Colorado State University

Making Sure Conditionals in C are Clear

for (int i1i=1; i < 4; i++) { for (int i1i=1; i < 4; i++) {
if ((childid = fork())) { if ((childid = fork()) '= 0) {
break; break;
} }
} Conditional is true when fork() returns non- } Conditional is true when fork() returns non-
zero value (so, fail or parent) zero value (so, -1, 42, etc.: fail or parent)

for (int i=1; i < 4; i++) {
if ((childid = fork()) > 0) {

for (int i=1; i < 4; i++) {
if ((childid = fork()) <= 0) {

break; break;
} }

} Conditional is true when fork()
Conditional is true when fork() returns returns positive value (so, child)
negative or zero value (so, fail or parent)

fork() == -1 is a failure, break executed by parent, no child
fork() == O is a success, break executed by child
fork() > O is a success, break executed by parent CS370: System Architecture & Software [Fall 2014] L5.4

Dept. Of Computer Science, Colorado State University

Topics covered in this lecture
N

1 Shells and Daemons
-1 POSIX

1 Inter Process Communications

CS370: System Architecture & Software [Fall 201 4] L5.5
Dept. Of Computer Science, Colorado State University

SHELLS AND DAEMONS

Shell: Command interpreter

Prompts for commands

Reads commands from standard input
Forks children to execute commands
Waiits for children to finish

When standard I /0 comes from terminal

Terminate command with the interrupt character
Default Ctr1-C

CS370: System Architecture & Software [Fall 2014] L5.7
Dept. Of Computer Science, Colorado State University

Background processes and daemons

Shell interprets commands ending with & as a background process

No waiting for process to complete

Issue prompt immediately
Accept new commands

Ctrl-C has no effect, but Shell commands to manipulate processes (fg, bg)

Daemon is a background process

Runs “indefinitely”: not dependent on Shell termination

CS370: System Architecture & Software [Fall 2014] L5.8
Dept. Of Computer Science, Colorado State University

POSIX

Portable Operating Systems Interface for UNIX
(POSIX)

2 distinct, incompatible flavors of UNIX existed
System V from AT&T
BSD UNIX from Berkeley

Programs written from one type of UNIX

Did not run correctly (sometimes even compile) on UNIX from another vendor

Pronounced pahz-icks

CS370: System Architecture & Software [Fall 2014] L5.10
Dept. Of Computer Science, Colorado State University

|IEEE attempt to develop a standard for UNIX
libraries

POSIX.1 published in 1988

Covered a small subset of UNIX

In 1994, X/Open Foundation had

Much more comprehensive effort
Called Spec 1170

Based on System V

Inconsistencies between POSIX.1T and Spec 1170

CS370: System Architecture & Software [Fall 2014] L5.11
Dept. Of Computer Science, Colorado State University

The path to the final POSIX standard

1998

Another version of the X/Open standard
Many additions to POSIX.1

Austin Group formed
Open Group, IEEE POSIX, and ISO/IEC tech committee

International Standards Organization (1ISO)

International Electrotechnical Commission (IEC)

Revise, combine and update standards

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.12

The path to the final POSIX standard:
Joint document

Approved by IEEE & Open Group
End of 2001

ISO/IEC approved it in November 2002

Single UNIX spec
Version 3, IEEE Standard 1003.1-2001
POSIX

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.13

If you write for POSIX-compliant systems
—

1 No need to contend with small, but critical variations in library
functions

Across platforms

CS370: System Architecture & Software [Fall 2014] L5.14
Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS
(IPC)

Independent and Cooperating processes

Independent: CANNOT affect or be affected by other processes

Cooperating: CAN affect or be affected by other processes

CS370: System Architecture & Software [Fall 2014] L5.16
Dept. Of Computer Science, Colorado State University

Why have cooperating processes?

Information sharing: shared files

Computational speedup

Sub tasks for concurrency

Modularity

Convenience: Do multiple things in parallel
Privilege separation

Etc.

CS370: System Architecture & Software [Fall 2014] L5.17
Dept. Of Computer Science, Colorado State University

Cooperating processes need |IPC to exchange data

and information
R

0 Shared memory

Establish memory region to be shared

Read and write to the shared region

0 Message passing

Communications through message exchange

CS370: System Architecture & Software [Fall 2014] L5.18
Dept. Of Computer Science, Colorado State University

Contrasting the two IPC approaches
N

Easier to implement Maximum speed

Best for small amounts of data

. . o System calls to establish shared memory
Kernel intervention for communications

CS370: System Architecture & Software [Fall 201 4] L5.19
Dept. Of Computer Science, Colorado State University

Shared memory systems

Shared memory resides in the address space of process creating it

Other processes must attach segment to their address space

CS370: System Architecture & Software [Fall 2014] L5.20
Dept. Of Computer Science, Colorado State University

Using shared memory

But the OS typically prevents processes from accessing each other’s
memory, so ...

(1) Processes must agree to remove this restriction

(2) Processes also coordinate access to this region

CS370: System Architecture & Software [Fall 2014] L5.21
Dept. Of Computer Science, Colorado State University

Let’s look a little closer at cooperating processes

Producer-consumer problem is a good exemplar of such cooperation

Producer process produces information

Consumer process consumes this information

CS370: System Architecture & Software [Fall 2014] L5.22
Dept. Of Computer Science, Colorado State University

One solution to the producer-consumer problem uses
shared-memory

Buffer is a shared-memory region for the 2 processes

Buffer needed to allow producer & consumer to run concurrently
Producer fills it

Consumer empties it

CS370: System Architecture & Software [Fall 2014] L5.23
Dept. Of Computer Science, Colorado State University

Buffers and sizes

Bounded: Assume fixed size
Consumer waits if empty

Producer waits if full

Unbounded: Unlimited number of entries

Only the consumer waits WHEN buffer is empty

CS370: System Architecture & Software [Fall 2014] L5.24
Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded

After consuming: {in=0, out=0} ter producing:

out= (out+1) $SBUFFER SIZE in=(1n+l) $SBUFFER SIZE

{in=1, out=0}

{in=2, out=0}

1in: next free position (producer)

out: first full position (consumer)
CS370: System Architecture & Software [Fall 201 4] L5.25

Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded

After consuming: !!’rer pro!ucing:

out= (out+1) $SBUFFER SIZE in=(1n+l) $SBUFFER SIZE

{in=2, out=1}

1in: next free position (producer)

out: first full position (consumer)
CS370: System Architecture & Software [Fall 201 4] L5.26

Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded
—q
After consuming: ter producing:
out=

(out+1) SBUFFER SIZE (1n+1l) SBUFFER SIZE

{in=2, out=2}

After consuming
in == out
Buffer is EMPTY

1in: next free position (producer)

out: first full position (consumer)
CS370: System Architecture & Software [Fall 201 4] L5.27

Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded

After consuming: !!’rer pro!ucing:

out= (out+1) $SBUFFER SIZE {in=1, out=2}in=(in+l)$BUFFER SIZE

{in=3, out=2}

{in=4, out=2}

1in: next free position (producer)

out: first full position (consumer)
CS370: System Architecture & Software [Fall 201 4] L5.28

Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded

After consuming: !!’rer pro!ucing:

out= (out+1) $SBUFFER SIZE in=(1n+l) $SBUFFER SIZE

{in=2, out=2}

After producing:
(in+1) %BUFFER_S IZE==out

in: next free position (producer) Buffer is FULL

out: first full position (consumer)
CS370: System Architecture & Software [Fall 201 4] L5.29

Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS
SHARED MEMORY

POSIX IPC: Shared Memory
Creating a memory segment to share

First create shared memory segment shmget ()
shmget (IPC PRIVATE, size, S IRUSR | S IWUSR)
= TPC PRIVATE: key for the segment

= size: size of the shared memory

= S TRUSR|S IWUSR: Mode of access (read, write)

Successful invocation of shmget ()

Returns integer ID of shared segment

Needed by other processes that want to use region

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.31

Processes wishing to use shared memory
must first attach it to their address space

Done using shmat (): SHared Memory ATtach

Returns pointer to beginning location in memory

(char *) shmat(id, asmP, mode)
1d: Integer ID of memory segment being attached

asmP: Pointer location to attach shared memory

NULL allows OS to select location for you

Mode indicating read-only or read-write

0: reads and writes to shared memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.32

IPC: Use of the created shared memory

Once shared memory is attached to the process’s
address space

Routine memory accesses using * from shmat ()

Write to it
sprintf (shared memory, "“Hello”);

Print string from memory

printf (“*%\n”, shared memory);

RULE: First attach, and then access

CS370: System Architecture & Software [Fall 2014] L5.33
Dept. Of Computer Science, Colorado State University

IPC Shared Memory:
What to do when you are done

(1) Detach from the address space.
shmdt () :SHared Memory DeTtach

shmdt (shared memory)

(2) To remove a shared memory segment
shmctl () : SHared Memory ConTroL operation

Specify the segment ID to be removed

Specify operation to be performed: IPC RMID

Pointer to the shared memory region

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.34

INTER PROCESS COMMUNICATIONS
MESSAGE PASSING

Communicate and synchronize actions
without sharing the same address space

Useful in distributed environments (e.g., Message Passing Interface)

Two main operations
send (message)

recelve (message)

Message sizes can be:
Fixed: Easy

Variable: Little more effort

CS370: System Architecture & Software [Fall 2014] L5.36
Dept. Of Computer Science, Colorado State University

Communications between processes

There needs to be a communication link

Underlying physical implementation
Shared memory
Hardware bus

Network

CS370: System Architecture & Software [Fall 2014] L5.37
Dept. Of Computer Science, Colorado State University

Aspects to consider for IPC

(1) Communications

Direct or indirect

(2) Synchronization

Synchronous or asynchronous

(3) Buffering

Automatic or explicit buffering

CS370: System Architecture & Software [Fall 2014] L5.38
Dept. Of Computer Science, Colorado State University

Naming allows processes to refer to each other
—

71 Processes use each other’s identity to communicate

1 Communications can be
Direct

Indirect

CS370: System Architecture & Software [Fall 2014] L5.39
Dept. Of Computer Science, Colorado State University

Direct communications

Explicitly name recipient or sender

Link is established automatically

Exactly one link between the 2 processes

Addressing

Symmetric

Asymmetric

CS370: System Architecture & Software [Fall 2014] L5.40
Dept. Of Computer Science, Colorado State University

Direct Communications:
Addressing

°® 3ymme1-ric qddressing s EXP'ICIT'Y name r'ecipien‘l'
and sender of message

* send (P, message)

* recelve (Q, message)

) Asymme’rnc Clddressmg — Only sender names recipient
— send (P, message) Recipient does not

—receive (1d, message)

* Variable 1d set to name of the sending process

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.41

Direct Communications: Disadvantages

Limited modularity of process definitions

Cascading effects of changing the identifier of process

Examine all other process definitions

CS370: System Architecture & Software [Fall 2014] L5.42
Dept. Of Computer Science, Colorado State University

Indirect communications: Message sent and received
from mailboxes (ports)

Each mailbox has a unique identification & owner

POSIX message queues use integers to identify
mailboxes

Processes communicate only if they have shared
mailbox

send (A, message)

recelve (A, message)

CS370: System Architecture & Software [Fall 2014] L5.43
Dept. Of Computer Science, Colorado State University

Indirect communications: Link properties

Link established only if both members share mailbox

Link may be associated with more than two processes

CS370: System Architecture & Software [Fall 2014] L5.44
Dept. Of Computer Science, Colorado State University

Indirect communications

Processes P1, P2 and P3 share mailbox A

P1 sends a message to A

P2, P3 execute a receive () from A

Possibilities¢ Allow ...

(1) Link to be associated with at most 2 processes

@ At most 1 process to execute receive () at atime

(3) System to arbitrarily select who gets message

CS370: System Architecture & Software [Fall 2014] L5.45
Dept. Of Computer Science, Colorado State University

Mailbox ownership: Owned by OS

Mailbox has its own existence

Mailbox is independent

Not attached to any process

OS must allow processes to
Create mailbox
Send and receive through the mailbox

Delete mailbox

CS370: System Architecture & Software [Fall 2014] L5.46
Dept. Of Computer Science, Colorado State University

Message passing: Synchronization issues
Options for implementing primitives

Blocking send

Block until received by process or mailbox

Nonblocking send

Send and promptly resume other operations

Blocking receive

Block until message available

Nonblocking receive

Retrieve valid message or null

Producer-Consumer problem: Easy with blocking

CS370: System Architecture & Software [Fall 2014] L5.47
Dept. Of Computer Science, Colorado State University

Message Passing: Buffering

Messages exchanged by communicating processes reside in o
temporary queuve

Implementation schemes for queues
ZERO Capacity
Bounded
Unbounded

CS370: System Architecture & Software [Fall 2014] L5.48
Dept. Of Computer Science, Colorado State University

Message Passing Buffer:
Consumer always has to wait for message

ZLERO capacity: No messages can reside in queue

Sender must block till recipient receives

BOUNDED: At most n messages can reside in queue

Sender blocks only if queue is full

UNBOUNDED: Queue length potentially infinite

Sender never blocks

CS370: System Architecture & Software [Fall 2014] L5.49
Dept. Of Computer Science, Colorado State University

MICROKERNELS

The Microkernel Approach [1/2]

Mid 1980’s at Carnegie Mellon University
Mach

Structure OS by removing non-essential components from the kernel

Implement other things as system /user programs

Provide minimal process and memory management

Main function: Provide communication facility between client and
services

Message passing

CS370: System Architecture & Software [Fall 2014] L5.51
Dept. Of Computer Science, Colorado State University

The Microkernel Approach [2/2]

Traditionally all the layers went in the kernel

But this is not really necessary

In fact, it may be best to put as little as possible in the kernel

Bugs in the kernel can bring down the system instantly

Contrast this with setting up user processes to have less power

A bug may not be fatal

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.52

Getting there ...

Achieve high reliability by splitting OS in small, well-defined modules
One of these, the microkernel, runs in the kernel mode

The rest as relatively powerless ordinary user processes

Running each device driver as a separate process?

Bugs cannot crash the entire system

CS370: System Architecture & Software [Fall 2014] L5.53
Dept. Of Computer Science, Colorado State University

Communications in the micro-kernel

Client and service never interact directly
Indirect communications by exchanging messages with the microkernel

Advantages

Easier to port to different hardware

More security and reliability

Most services run as user, rather than kernel

Mac OS X kernel based on Mach microkernel

CS370: System Architecture & Software [Fall 2014] L5.54
Dept. Of Computer Science, Colorado State University

Increased system function overhead can degrade
microkernel performance

Windows NT: First release, layered microkernel

Lower performance than Windows 95

Windows NT 4.0 solution

Move layers from user space to kernel space

By the time Windows XP came around

More monolithic than microkernel

CS370: System Architecture & Software [Fall 2014] L5.55
Dept. Of Computer Science, Colorado State University

IPC communications: Mach

Tasks are similar to processes

Multiple threads of control

Most communications in Mach use messages
System calls
Inter-task information

Sent and received from mailboxes: ports

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.56

Mach: Task creation and mailboxes

Task creation results in 2 more mailboxes

(1) Kernel mailbox: Used by kernel to communicate with task

(2) Notify mailbox: Notification of event occurrences

System calls for communications

msg send(), msg receive () and msg rpc ()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.57

Mach:
Mailbox creation

Done using the port allocate ()

Allocate space for message queue
MAX_SIZE default is 8 messages

Creator is owner and can also receive

Only task can own/receive from mailbox

BUT these rights can be sent to other tasks

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L5.58

Mach:
Message queue ordering

FIFO guarantees for messages from same sender

Messages from multiple senders queued in any order

CS370: System Architecture & Software [Fall 2014] L5.59
Dept. Of Computer Science, Colorado State University

Mach: Send and receive operations

If mailbox is not full, copy message

If mailbox is FULL
(1) Wait indefinitely till there’s room
(2) Wait at most n milliseconds
Don’t wait, simply return
(3) Temporarily cache the message

Only 1 message to a full mailbox can be pending for a given sending thread

Receive can specify mailbox or mailbox set

CS370: System Architecture & Software [Fall 2014] L5.60
Dept. Of Computer Science, Colorado State University

Another idea related to microkernels

Put mechanisms for doing something in the kernel

But not the policy

Example: Scheduling
Policy of assigning priorities to processes can be done in the user-mode

The mechanism to look for the highest priority process and schedule it is in
the kernel

CS370: System Architecture & Software [Fall 2014] L5.61
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

CS370: System Architecture & Software [Fall 2014] L5.62
Dept. Of Computer Science, Colorado State University

	Slide 1: CS 370: Operating Systems [Inter Process Communications]
	Slide 2: Creating a chain of processes
	Slide 3: Creating a process fan
	Slide 4: Making Sure Conditionals in C are Clear
	Slide 5: Topics covered in this lecture
	Slide 6: Shells and Daemons
	Slide 7: Shell: Command interpreter
	Slide 8: Background processes and daemons
	Slide 9: POSIX
	Slide 10: Portable Operating Systems Interface for Unix (POSIX)
	Slide 11: IEEE attempt to develop a standard for Unix libraries
	Slide 12: The path to the final POSIX standard
	Slide 13: The path to the final POSIX standard: Joint document
	Slide 14: If you write for POSIX-compliant systems
	Slide 15: Inter Process Communications (IPC)
	Slide 16: Independent and Cooperating processes
	Slide 17: Why have cooperating processes?
	Slide 18: Cooperating processes need IPC to exchange data and information
	Slide 19: Contrasting the two IPC approaches
	Slide 20: Shared memory systems
	Slide 21: Using shared memory
	Slide 22: Let’s look a little closer at cooperating processes
	Slide 23: One solution to the producer-consumer problem uses shared-memory
	Slide 24: Buffers and sizes
	Slide 25: Circular buffer: Bounded
	Slide 26: Circular buffer: Bounded
	Slide 27: Circular buffer: Bounded
	Slide 28: Circular buffer: Bounded
	Slide 29: Circular buffer: Bounded
	Slide 30: Inter Process Communications Shared Memory
	Slide 31: POSIX IPC: Shared Memory Creating a memory segment to share
	Slide 32: Processes wishing to use shared memory must first attach it to their address space
	Slide 33: IPC: Use of the created shared memory
	Slide 34: IPC Shared Memory: What to do when you are done
	Slide 35: Inter Process Communications Message Passing
	Slide 36: Communicate and synchronize actions without sharing the same address space
	Slide 37: Communications between processes
	Slide 38: Aspects to consider for IPC
	Slide 39: Naming allows processes to refer to each other
	Slide 40: Direct communications
	Slide 41: Direct Communications: Addressing
	Slide 42: Direct Communications: Disadvantages
	Slide 43: Indirect communications: Message sent and received from mailboxes (ports)
	Slide 44: Indirect communications: Link properties
	Slide 45: Indirect communications
	Slide 46: Mailbox ownership: Owned by OS
	Slide 47: Message passing: Synchronization issues Options for implementing primitives
	Slide 48: Message Passing: Buffering
	Slide 49: Message Passing Buffer: Consumer always has to wait for message
	Slide 50: Microkernels
	Slide 51: The Microkernel Approach [1/2]
	Slide 52: The Microkernel Approach [2/2]
	Slide 53: Getting there …
	Slide 54: Communications in the micro-kernel
	Slide 55: Increased system function overhead can degrade microkernel performance
	Slide 56: IPC communications: Mach
	Slide 57: Mach: Task creation and mailboxes
	Slide 58: Mach: Mailbox creation
	Slide 59: Mach: Message queue ordering
	Slide 60: Mach: Send and receive operations
	Slide 61: Another idea related to microkernels
	Slide 62: The contents of this slide-set are based on the following references

