CS 370: OPERATING SYSTEMS
[THREADS]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2026

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture
N

1 Classical thread model

1 User- and kernel-level threads
1 Thread Models

CS370: Operating Systems L7.2
Dept. Of Computer Science, Colorado State University

CLASSICAL THREAD MODEL

The process model is based on two independent

COHCGETS
I

-1 Resource grouping

1 Execution

CS370: Operating Systems L7 .4
Dept. Of Computer Science, Colorado State University

A process can be thought of as a way to group

related resources together
—

1 Address space containing program text and data

1 Other resources

Open files, child processes, pending alarms, signal handlers, etc.

CS370: Operating Systems L7.5
Dept. Of Computer Science, Colorado State University

A process also has a thread-of-execution

Usually shortened to just thread

The thread has

(1) Program counter
(2) Registers: Current working variables

(3) Stack: Contains execution history

One frame for each procedure called, but not returned from

CS370: Operating Systems L7.6
Dept. Of Computer Science, Colorado State University

Although a thread must execute in some process

The process and thread are different concepts

Can be treated separately
Processes are used to group resources together

Threads are entities scheduled for execution on the CPU

CS370: Operating Systems L7.7
Dept. Of Computer Science, Colorado State University

Threads & Processes

Threads extend the process model by allowing multiple executions in

the same process

Multiple threads in parallel in one process?

Analogous to multiple processes running in parallel on one computer

CS370: Operating Systems L7.8
Dept. Of Computer Science, Colorado State University

Threads and Processes
—

User
——
space

Kernel

Kernel — Kernel

space

—

Three processes, each with one thread One process with three threads

CS370: Operating Systems L7.9
Dept. Of Computer Science, Colorado State University

Different threads in a process are NOT AS
INDEPENDENT as different processes

All threads within a process have the same address space

Share the same global variables

Every thread can access every memory address within the process’
address space

Read
Write

Wipe out another thread’s stack

CS370: Operating Systems L7.10
Dept. Of Computer Science, Colorado State University

There is no protection between threads, because ...

I
(1) It is “impossible” (part of the same process)

(2) It should not be necessary

CS370: Operating Systems L7.11
Dept. Of Computer Science, Colorado State University

Unlike processes which may be from different users

A process is always owned by a single user

User created threads so that they can cooperate ... not
fight

CS370: Operating Systems L7.12
Dept. Of Computer Science, Colorado State University

Contrasting items unique & shared across threads
N

Address space Program Counter
Global variables Registers

Open files Stack

Child Processes State

Pending alarms
Signals and signal handlers

Accounting Information

CS370: Operating Systems L7.13
Dept. Of Computer Science, Colorado State University

A thread is a basic unit of CPU utilization
I =
o1 Thread ID
7 Program Counter
71 Register Set
o Stack

1 State

CS370: Operating Systems L7.14
Dept. Of Computer Science, Colorado State University

Sharing among threads belonging to a given process

I
1 Code section
- Data section

1 OS resources
o1 Open files
o Signals

CS370: Operating Systems L7.15
Dept. Of Computer Science, Colorado State University

A process with multiple threads of control

can perform more than 1 task at a time
-—

CODE DATA FILES CODE DATA FILES
Stack

Stack Stack

Traditional Heavy weight process Process with multiple threads

CS370: Operating Systems L7.16
Dept. Of Computer Science, Colorado State University

Why each thread needs its own stack (1)

Stack contains one frame for each procedure called but not returned
from

Frame contains
Local variables

Procedure’s return address

CS370: Operating Systems L7.17
Dept. Of Computer Science, Colorado State University

Why each thread needs its own stack (2)

Procedure X calls procedure ¥, Y then calls Z

When Z is executing?

Frames for X, Y and Z will be on the stack

Each thread calls different procedures

So has a different execution history

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.18

Each thread has its own stack
N

Stack for
thread

Kernel

CS370: Operating Systems L7.19
Dept. Of Computer Science, Colorado State University

Thread states are similar to processes
N

-1 Running
- Blocked
0 Ready

1 Terminated

CS370: Operating Systems L7.20
Dept. Of Computer Science, Colorado State University

BENEFITS OF MULTITHREADED
PROGRAMMING

The rationale for threads

Process creation is
Time consuming

Resource intensive

If new process performs same tasks as existing process

Why incur this overhead?

Much more efficient to use multiple threads in the process

CS370: Operating Systems L7.22
Dept. Of Computer Science, Colorado State University

Threads have made inroads into the OS itself

Most OS kernels are now multithreaded
Perform specific tasks
Interrupt handling

Device management

Solaris OS
Multiple threads in the kernel for interrupt handling

Linux

Kernel thread manages system’s free memory

CS370: Operating Systems L7.23
Dept. Of Computer Science, Colorado State University

Benefits of multithreaded programming
-

(1) Responsiveness

(2) Resource Sharing

(3) Economy
(4) Scalability

CS370: Operating Systems L7.24
Dept. Of Computer Science, Colorado State University

Multithreaded programming: Benefit #1
Responsiveness

Interactive multithreaded application

Parts of program may be blocked or slow

Remainder of program may still chug along

E.g., Web browser

You may read text, while high-resolution image is being downloaded

CS370: Operating Systems L7.25
Dept. Of Computer Science, Colorado State University

Multithreaded programming: Benefit #2
Resource Sharing

Programmer arranges sharing between processes

Shared memory & message passing

Threads within a process share its resources
Memory, code, and data

Allows several different threads of activity within the same process

CS370: Operating Systems L7.26
Dept. Of Computer Science, Colorado State University

Multithreaded programming: Benefit #3
Economy

Process creation is memory and resource intensive

Threads share process’ resources

Economical to create and context-switch threads

Solaris: Process vs. Threads
Process creation is 30 times slower

Process context switching is 5 times slower

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.27

Multithreaded programming: Benefit #4
Scalability

A single threaded process can ONLY run on 1 processor
Regardless of how many are available

Underutilization of compute resource

CS370: Operating Systems L7.28
Dept. Of Computer Science, Colorado State University

Comparing thread executions on single core and
dual core systems

T 72 73 T4 T2 T1 T4 T3

time
>

Single core: Thread executions are interleaved on a single core

wrer T1 T2 T1 T2 [T

core 2 3 T4 T, T4 T3
time
>

True concurrency: Threads execute in parallel on different cores

vvvvv

CS370: Operating Systems L7.29
Dept. Of Computer Science, Colorado State University

Demand pulls of multicore systems

OS designers

Scheduling algorithms to harness multiple cores

Application Programmers

Modify existing non-threaded programs
Daunting!

Design multithreaded programs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.30

Going about writing multithreaded programs (1)

Subdivide functionality into multiple separate & concurrent tasks

Ensure tasks perform equal work of equal value

CS370: Operating Systems L7.31
Dept. Of Computer Science, Colorado State University

Going about writing multithreaded programs (2)

Managing data manipulated by tasks

Split to run on separate cores. BUT

Examine data dependencies between the tasks

Threaded programs on many core systems have many different
execution paths

Which may or may not reveal bugs

Testing and debugging is inherently harder

CS370: Operating Systems L7.32
Dept. Of Computer Science, Colorado State University

COMPLICATIONS INTRODUCED BY
THREADS

Semantics of fork () and exec () with a
multithreaded program

If one thread calls fork ()
Does new thread duplicate all threads?

Is the new process single-threaded?

Depends on when/if exec () is called

If immediate: Duplicating all threads unnecessary

If NOT: Separate process should duplicate all threads

CS370: Operating Systems L7.34
Dept. Of Computer Science, Colorado State University

If the child process gets as many threads as the
parent

What happens if a thread in the parent was blocked on a read
system call?

Say from the keyboard

Are there two threads blocked on the keyboard?
When a line is typed, do both threads get a copy?

Same issue with open network connections

CS370: Operating Systems L7.35
Dept. Of Computer Science, Colorado State University

Problems relating to sharing data structures

What if one thread closes a file ...

When another thread is reading from it

A thread notices that there is little memory
Starts allocating more memory
Midway in the allocation, a thread-switch occurs

New thread notices there is too little memory

Starts allocating more memory

Memory gets allocated twice!

CS370: Operating Systems L7.36
Dept. Of Computer Science, Colorado State University

SUPPORT FOR THREADS

Support for threads

Kernel threads

Supported & managed by the OS

User threads
User level

Above the kernel

A relationship must exist between user threads and kernel threads

CS370: Operating Systems L7.38
Dept. Of Computer Science, Colorado State University

Summarizing threading models

§ €&— User threads

=2<

€— Kernel thread

Many-to-One One-to-one

CS370: Operating Systems L7.39
Dept. Of Computer Science, Colorado State University

Summarizing threading models

=

/
f
f
/
/
/
f
/
/

/
4

Many-to-Many Two-level

CS370: Operating Systems L7.40
Dept. Of Computer Science, Colorado State University

USER-LEVEL THREADS

User-level threads: Overview

Kernel
space™

Kernel k

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Thread
table

Process
table

L7.42

User threads are invisible to the kernel and have low
overhead

Compete among themselves for resources allocated to their
encapsulating process

Scheduled by a thread runtime system that is part of the process code

Programs link to a special library
Each function is enclosed by a jacket

Jacket function calls thread runtime to do thread management

Before (and possibly after) calling jacketed library function.

CS370: Operating Systems L7.43
Dept. Of Computer Science, Colorado State University

User level thread libraries: Managing blocking calls

Replace potentially blocking calls with non-blocking ones
If a call does not block, the runtime invokes it

If the call may block
(1) Place thread on a list of waiting thread:s
(2) Add call to list of actions to try later
(3) Pick another thread to run

ALL control is invisible to user and OS

CS370: Operating Systems L7.44
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (1)

Assumes that the runtime will eventually regain control, this is
thwarted by:

CPU bound threads

Thread that rarely perform library calls ...

Runtime can’t regain control to schedule other threads

Programmer must avoid lockout situations
Force CPU-bound thread to yield control

CS370: Operating Systems L7.45
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (2)

Can only share processor resources allocated to encapsulating process

Limits available parallelism

CS370: Operating Systems L7.46
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 12]

CS370: Operating Systems L7.47
Dept. Of Computer Science, Colorado State University

