
CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[THREADS]

Computer Science
Colorado State University

L7.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L7.2

Topics covered in this lecture

¨ Classical thread model
¨ User- and kernel-level threads
¨ Thread Models
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The process model is based on two independent 
concepts

¨ Resource grouping

¨ Execution
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A process can be thought of as a way to group 
related resources together

¨ Address space containing program text and data

¨ Other resources
¤ Open files, child processes, pending alarms, signal handlers, etc.
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A process also has a thread-of-execution

¨ Usually shortened to just thread

¨ The thread has
① Program counter

② Registers: Current working variables

③ Stack: Contains execution history
n One frame for each procedure called, but not returned from
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Although a thread must execute in some process

¨ The process and thread are different concepts
¤ Can be treated separately

¨ Processes are used to group resources together

¨ Threads are entities scheduled for execution on the CPU
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Threads & Processes

¨ Threads extend the process model by allowing multiple executions in 
the same process

¨ Multiple threads in parallel in one process?
¤ Analogous to multiple processes running in parallel on one computer
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Threads and Processes

Kernel

User 
space

Kernel
space Kernel

Three processes, each with one thread One process with three threads
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Different threads in a process are NOT AS 
INDEPENDENT as different processes

¨ All threads within a process have the same address space
¤ Share the same global variables

¨ Every thread can access every memory address within the process’ 
address space
¤ Read
¤ Write
¤ Wipe out another thread’s stack
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There is no protection between threads, because …

① It is “impossible” (part of the same process)

② It should not be necessary
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Unlike processes which may be from different users

¨ A process is always owned by a single user

¨ User created threads so that they can cooperate … not 
fight
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Contrasting items unique & shared across threads

Per process items 
{Shared by threads within a process}

Per thread items
{Items unique to a thread}

Address space
Global variables
Open files
Child Processes
Pending alarms
Signals and signal handlers
Accounting Information

Program Counter
Registers
Stack
State
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A thread is a basic unit of CPU utilization

¨ Thread ID
¨ Program Counter
¨ Register Set
¨ Stack
¨ State
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Sharing among threads belonging to a given process

¨ Code section
¨ Data section
¨ OS resources

¤ Open files
¤ Signals
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A process with multiple threads of control 
can perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads
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Why each thread needs its own stack (1)

¨ Stack contains one frame for each procedure called but not returned 
from

¨ Frame contains 
¤ Local variables 
¤ Procedure’s return address
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Why each thread needs its own stack (2)

¨ Procedure X calls procedure Y, Y then calls Z 
¤ When Z is executing?

nFrames for X, Y and Z will be on the stack

¨ Each thread calls different procedures 
¤ So has a different execution history
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Each thread has its own stack

Kernel

Stack for 
thread
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Thread states are similar to processes

¨ Running
¨ Blocked
¨ Ready
¨ Terminated
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The rationale for threads

¨ Process creation is 
¤ Time consuming
¤ Resource intensive

¨ If new process performs same tasks as existing process
¤ Why incur this overhead?

¨ Much more efficient to use multiple threads in the process
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Threads have made inroads into the OS itself

¨ Most OS kernels are now multithreaded
¤ Perform specific tasks
¤ Interrupt handling
¤ Device management

¨ Solaris OS
¤ Multiple threads in the kernel for interrupt handling

¨ Linux
¤ Kernel thread manages system’s free memory 
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Benefits of multithreaded programming

①  Responsiveness

②  Resource Sharing

③  Economy

④  Scalability
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Multithreaded programming: Benefit #1
Responsiveness

¨ Interactive multithreaded application
¤ Parts of program may be blocked or slow
¤ Remainder of program may still chug along
¤ E.g., Web browser

n You may read text, while high-resolution image is being downloaded
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Multithreaded programming: Benefit #2
Resource Sharing

¨ Programmer arranges sharing between processes
¤ Shared memory & message passing

¨ Threads within a process share its resources
¤ Memory, code, and data
¤ Allows several different threads of activity within the same process 
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Multithreaded programming: Benefit #3
Economy

¨ Process creation is memory and resource intensive

¨ Threads share process’ resources
¤ Economical to create and context-switch threads

¨ Solaris: Process vs. Threads
¤ Process creation is 30 times slower
¤ Process context switching is 5 times slower 
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Multithreaded programming: Benefit #4
Scalability

¨ A single threaded process can ONLY run on 1 processor
¤ Regardless of how many are available
¤ Underutilization of compute resource
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Comparing thread executions on single core and 
dual core systems

T1 T2 T3 T4 T2 T1 T4 T3
time

Single core: Thread executions are interleaved on a single core

True concurrency: Threads execute in parallel on different cores 

time

T1 T2 T2T1 …core 1

T3 T4 TX T4 T3core 2
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Demand pulls of multicore systems

¨ OS designers
¤ Scheduling algorithms to harness multiple cores

¨ Application Programmers
¤ Modify existing non-threaded programs

n Daunting!

¤ Design multithreaded programs
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Going about writing multithreaded programs (1)

¨ Subdivide functionality into multiple separate & concurrent tasks

¨ Ensure tasks perform equal work of equal value
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Going about writing multithreaded programs (2)

¨ Managing data manipulated by tasks
¤ Split to run on separate cores. BUT

n Examine data dependencies between the tasks

¨ Threaded programs on many core systems have many different 
execution paths
¤ Which may or may not reveal bugs
¤ Testing and debugging is inherently harder
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Semantics of fork() and exec() with a 
multithreaded program

¨ If one thread calls fork()
¤ Does new thread duplicate all threads?
¤ Is the new process single-threaded?

¨ Depends on when/if exec() is called
¤ If immediate: Duplicating all threads unnecessary
¤ If NOT: Separate process should duplicate all threads
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If the child process gets as many threads as the 
parent

¨ What happens if a thread in the parent was blocked on a read 
system call?
¤ Say from the keyboard

¨ Are there two threads blocked on the keyboard?
¤ When a line is typed, do both threads get a copy?

¨ Same issue with open network connections
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Problems relating to sharing data structures

¨ What if one thread closes a file …
¤ When another thread is reading from it?

¨ A thread notices that there is little memory
¤ Starts allocating more memory
¤ Midway in the allocation, a thread-switch occurs
¤ New thread notices there is too little memory

n Starts allocating more memory

¤ Memory gets allocated twice!
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Support for threads

¨ Kernel threads
¤ Supported & managed by the OS

¨ User threads
¤ User level 
¤ Above the kernel

¨ A relationship must exist between user threads and kernel threads
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Summarizing threading models

User threads

k Kernel thread k k k

Many-to-One One-to-one
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Summarizing threading models

kk k kk k k

Many-to-Many Two-level
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User-level threads: Overview

Kernel

User 
space

Kernel 
space

Process Thread

Thread 
table

Process 
table

Runtime System
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User threads are invisible to the kernel and have low 
overhead

¨ Compete among themselves for resources allocated to their 
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management 

n Before (and possibly after) calling jacketed library function.
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User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
①  Place thread on a list of waiting threads
②  Add call to list of actions to try later
③  Pick another thread to run

¨ ALL control is invisible to user and OS
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Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is 
thwarted by: 
¤ CPU bound threads
¤ Thread that rarely perform library calls … 

n Runtime can’t regain control to schedule  other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control 
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Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism
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The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th  Edition, 2014. 
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 
ISBN-13: 978-0-13-042411-2. [Chapter 12]


