
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[THREADS]

Computer Science
Colorado State University

L7.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2026

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.2

Topics covered in this lecture

¨ Classical thread model
¨ User- and kernel-level threads
¨ Thread Models

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CLASSICAL THREAD MODEL
L7.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.4

The process model is based on two independent
concepts

¨ Resource grouping

¨ Execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.5

A process can be thought of as a way to group
related resources together

¨ Address space containing program text and data

¨ Other resources
¤ Open files, child processes, pending alarms, signal handlers, etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.6

A process also has a thread-of-execution

¨ Usually shortened to just thread

¨ The thread has
① Program counter

② Registers: Current working variables

③ Stack: Contains execution history
n One frame for each procedure called, but not returned from

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.7

Although a thread must execute in some process

¨ The process and thread are different concepts
¤ Can be treated separately

¨ Processes are used to group resources together

¨ Threads are entities scheduled for execution on the CPU

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.8

Threads & Processes

¨ Threads extend the process model by allowing multiple executions in
the same process

¨ Multiple threads in parallel in one process?
¤ Analogous to multiple processes running in parallel on one computer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.9

Threads and Processes

Kernel

User
space

Kernel
space Kernel

Three processes, each with one thread One process with three threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.10

Different threads in a process are NOT AS
INDEPENDENT as different processes

¨ All threads within a process have the same address space
¤ Share the same global variables

¨ Every thread can access every memory address within the process’
address space
¤ Read
¤ Write
¤ Wipe out another thread’s stack

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.11

There is no protection between threads, because …

① It is “impossible” (part of the same process)

② It should not be necessary

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.12

Unlike processes which may be from different users

¨ A process is always owned by a single user

¨ User created threads so that they can cooperate … not
fight

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.13

Contrasting items unique & shared across threads

Per process items
{Shared by threads within a process}

Per thread items
{Items unique to a thread}

Address space
Global variables
Open files
Child Processes
Pending alarms
Signals and signal handlers
Accounting Information

Program Counter
Registers
Stack
State

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.14

A thread is a basic unit of CPU utilization

¨ Thread ID
¨ Program Counter
¨ Register Set
¨ Stack
¨ State

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.15

Sharing among threads belonging to a given process

¨ Code section
¨ Data section
¨ OS resources

¤ Open files
¤ Signals

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.16

A process with multiple threads of control
can perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.17

Why each thread needs its own stack (1)

¨ Stack contains one frame for each procedure called but not returned
from

¨ Frame contains
¤ Local variables
¤ Procedure’s return address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.18

Why each thread needs its own stack (2)

¨ Procedure X calls procedure Y, Y then calls Z
¤ When Z is executing?

nFrames for X, Y and Z will be on the stack

¨ Each thread calls different procedures
¤ So has a different execution history

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.19

Each thread has its own stack

Kernel

Stack for
thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.20

Thread states are similar to processes

¨ Running
¨ Blocked
¨ Ready
¨ Terminated

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

BENEFITS OF MULTITHREADED
PROGRAMMING

L7.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.22

The rationale for threads

¨ Process creation is
¤ Time consuming
¤ Resource intensive

¨ If new process performs same tasks as existing process
¤ Why incur this overhead?

¨ Much more efficient to use multiple threads in the process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.23

Threads have made inroads into the OS itself

¨ Most OS kernels are now multithreaded
¤ Perform specific tasks
¤ Interrupt handling
¤ Device management

¨ Solaris OS
¤ Multiple threads in the kernel for interrupt handling

¨ Linux
¤ Kernel thread manages system’s free memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.24

Benefits of multithreaded programming

① Responsiveness

② Resource Sharing

③ Economy

④ Scalability

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.25

Multithreaded programming: Benefit #1
Responsiveness

¨ Interactive multithreaded application
¤ Parts of program may be blocked or slow
¤ Remainder of program may still chug along
¤ E.g., Web browser

n You may read text, while high-resolution image is being downloaded

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.26

Multithreaded programming: Benefit #2
Resource Sharing

¨ Programmer arranges sharing between processes
¤ Shared memory & message passing

¨ Threads within a process share its resources
¤ Memory, code, and data
¤ Allows several different threads of activity within the same process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.27

Multithreaded programming: Benefit #3
Economy

¨ Process creation is memory and resource intensive

¨ Threads share process’ resources
¤ Economical to create and context-switch threads

¨ Solaris: Process vs. Threads
¤ Process creation is 30 times slower
¤ Process context switching is 5 times slower

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.28

Multithreaded programming: Benefit #4
Scalability

¨ A single threaded process can ONLY run on 1 processor
¤ Regardless of how many are available
¤ Underutilization of compute resource

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.29

Comparing thread executions on single core and
dual core systems

T1 T2 T3 T4 T2 T1 T4 T3
time

Single core: Thread executions are interleaved on a single core

True concurrency: Threads execute in parallel on different cores

time

T1 T2 T2T1 …core 1

T3 T4 TX T4 T3core 2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.30

Demand pulls of multicore systems

¨ OS designers
¤ Scheduling algorithms to harness multiple cores

¨ Application Programmers
¤ Modify existing non-threaded programs

n Daunting!

¤ Design multithreaded programs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.31

Going about writing multithreaded programs (1)

¨ Subdivide functionality into multiple separate & concurrent tasks

¨ Ensure tasks perform equal work of equal value

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.32

Going about writing multithreaded programs (2)

¨ Managing data manipulated by tasks
¤ Split to run on separate cores. BUT

n Examine data dependencies between the tasks

¨ Threaded programs on many core systems have many different
execution paths
¤ Which may or may not reveal bugs
¤ Testing and debugging is inherently harder

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPLICATIONS INTRODUCED BY
THREADS

L7.33

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.34

Semantics of fork() and exec() with a
multithreaded program

¨ If one thread calls fork()
¤ Does new thread duplicate all threads?
¤ Is the new process single-threaded?

¨ Depends on when/if exec() is called
¤ If immediate: Duplicating all threads unnecessary
¤ If NOT: Separate process should duplicate all threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.35

If the child process gets as many threads as the
parent

¨ What happens if a thread in the parent was blocked on a read
system call?
¤ Say from the keyboard

¨ Are there two threads blocked on the keyboard?
¤ When a line is typed, do both threads get a copy?

¨ Same issue with open network connections

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.36

Problems relating to sharing data structures

¨ What if one thread closes a file …
¤ When another thread is reading from it?

¨ A thread notices that there is little memory
¤ Starts allocating more memory
¤ Midway in the allocation, a thread-switch occurs
¤ New thread notices there is too little memory

n Starts allocating more memory

¤ Memory gets allocated twice!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SUPPORT FOR THREADS
L7.37

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.38

Support for threads

¨ Kernel threads
¤ Supported & managed by the OS

¨ User threads
¤ User level
¤ Above the kernel

¨ A relationship must exist between user threads and kernel threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.39

Summarizing threading models

User threads

k Kernel thread k k k

Many-to-One One-to-one

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.40

Summarizing threading models

kk k kk k k

Many-to-Many Two-level

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

USER-LEVEL THREADS
L7.41

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.42

User-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process
table

Runtime System

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.43

User threads are invisible to the kernel and have low
overhead

¨ Compete among themselves for resources allocated to their
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management

n Before (and possibly after) calling jacketed library function.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.44

User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.45

Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is
thwarted by:
¤ CPU bound threads
¤ Thread that rarely perform library calls …

n Runtime can’t regain control to schedule other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.46

Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L7.47

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 12]

