
Certifying Algorithms

R. M. McConnella, K. Mehlhornb,∗, S. Näherc, P. Schweitzerd

aComputer Science Department, Colorado State University Fort Collins, USA
bMax Planck Institute for Informatics and Saarland University, Saarbr̈ucken, Germany

cFachbereich Informatik, Universität Trier, Trier, Germany
dMax Planck Institute for Informatics, Saarbrücken, Germany

Abstract

A certifying algorithm is an algorithm that produces, with each output, a certificate or witness
(easy-to-verify proof) that the particular output has not been compromised by a bug. A user of a
certifying algorithm inputsx, receives the outputy and the certificatew, and then checks, either
manually or by use of a program, thatw proves thaty is a correct output for inputx. In this way,
he/she can be sure of the correctness of the output without having to trust the algorithm.

We put forward the thesis that certifying algorithms are much superior to non-certifying al-
gorithms, and that for complex algorithmic tasks, only certifying algorithms are satisfactory.
Acceptance of this thesis would lead to a change of how algorithms are taught and how algo-
rithms are researched. The widespread use of certifying algorithms would greatly enhance the
reliability of algorithmic software.

We survey the state of the art in certifying algorithms and add to it. In particular, we start a
theory of certifying algorithms and prove that the concept is universal.

Contents

1 Introduction 4

2 First Examples 8
2.1 Tutorial Example 1: Testing Whether a Graph is Bipartite. 8
2.2 Tutorial Example 2: The Connected Components of an Undirected Graph 9
2.3 Tutorial Example 3: Greatest Common Divisor. 9
2.4 Tutorial Example 4: Shortest Path Trees. 11
2.5 Example: Maximum Cardinality Matchings in Graphs. 12
2.6 Case Study: The LEDA Planar Embedding Package. 13

3 Examples of Program Failures 18

4 Relation to Extant Work 19

∗Corresponding Author

Preprint submitted to Elsevier August 2, 2010

5 Definitions and Formal Framework 21
5.1 Strongly Certifying Algorithms. 22
5.2 Certifying Algorithms. 23
5.3 Weakly Certifying Algorithms . 24
5.4 Efficiency . 25
5.5 Simplicity and Checkability . 27
5.6 Deterministic Programs with Trivial Preconditions. 29
5.7 Non-Trivial Preconditions . 30
5.8 An Objection . 32

6 Checkers 32
6.1 The Pragmatic Approach. 33
6.2 Manipulation of the Input. 33
6.3 Formal Verification of Checkers. 34

7 Advantages of Certifying Algorithms 34

8 General Techniques 36
8.1 Reduction. 36

8.1.1 An Example . 37
8.1.2 The General Approach. 40

8.2 Linear Programming Duality. 41
8.3 Characterization Theorems. 47
8.4 Approximation Algorithms and Problem Relaxation. 47
8.5 Composition of Programs. 51

9 Further Examples 51
9.1 Convexity of Higher-dimensional Polyhedra and Convex Hulls 51
9.2 Solving Linear Systems of Equations. 55
9.3 NP-Complete Problems. 56
9.4 Maximum Weight Independent Sets in Interval Graphs. 57
9.5 String Matching. 59
9.6 Chordal Graphs. 60
9.7 Numerical Algorithms . 62
9.8 Guide to Literature. 63

10 Randomization 64
10.1 Monte Carlo Algorithms resist Deterministic Certification 64
10.2 Integer Arithmetic. 64
10.3 Matrix Operations. 66
10.4 Cycle Bases. 67
10.5 Definitions. 71

11 Certification and Verification 74

2

12 Reactive Programs and Data Structures 75
12.1 The Dictionary Problem. 77
12.2 Priority Queues. 78

13 Teaching Algorithms 83

14 Future Work 84

15 Conclusions 85

16 Acknowledgements 85

3

Program forf
x y

Certifying
program forf

CheckerC
x

x y

w

accepty

reject

Figure 1: The top figure shows the I/O behavior of a conventional program for computing a functionf . The user
feeds an inputx to the program and the program returns an outputy. The user of the program has no way of knowing
whethery is equal tof (x).
The bottom figure shows the I/O behavior of a certifying algorithm, which computesy and a witnessw. The checker
C accepts the triple(x,y,w) if and only if w is a valid witness for the equalityy = f (x).

1. Introduction

One of the most prominent and costly problems in software engineering is correctness of
software. When the user givesx as an input and the program outputsy, the user usually has no
way of knowing whethery is a correct output on inputx or whether it has been compromised by a
bug. The user is at the mercy of the program. Acertifying algorithmis an algorithm that produces
with each output acertificateor witnessthat theparticular outputhas not been compromised by
a bug. By inspecting the witness, the user can convince himself that the output is correct, or
reject the output as buggy. He is no longer on the mercy of the program. Figure1 contrasts a
standard algorithm with a certifying algorithm for computing a functionf .

A user of a certifying algorithm inputsx and receives the outputy and the witnessw. He
then checks thatw proves thaty is a correct output for inputx. The process of checkingw can
be automated with achecker, which is an algorithm for verifying thatw proves thaty is a correct
output forx. In may cases, the checker is so simple that a trusted implementation of it can be
produced, perhaps even in a different language where the semantics are fully specified. A formal
proof of correctness of the implementation of the certifying algorithm may be out of reach,
however, a formal proof of the correctness of the checker maybe feasible. Having checked the
witness, the user may proceed with complete confidence that outputy has not been compromised.

We want to stress that it does not suffice for the checker to be asimple algorithm. It is equally
important that it also easy for a user to understandwhy wproves thaty is a correct output for
inputx.

4

Figure 2: The graph on the left is bipartite. The two sides of the bipartition are indicated by node colors. The graph
on the right is non-bipartite. The edges of an odd-length cycle are highlighted.

A tutorial example that we describe in more detail below is the problem of recognizing
whether a graph is bipartite, that is, whether the vertices can be partitioned into two sets such
that all edges have an endpoint in each set. A non-certifyingalgorithm for testing bipartiteness
outputs a single bity; the bit tells whether the graph is bipartite or not. A certifying algorithm
does more; it proves its answer correct by providing an appropriate witnessw, see Figure2. If
the graph is bipartite, thenw is a bipartition. If the graph is not bipartite,w is an odd-length
cycle inG. Clearly odd-length cycles are not bipartite. Thus an odd-length cycle proves that a
graph is non-bipartite. For the user of the program there is no need to know that and why a non-
bipartite graph always contains an odd-length cycle. The checker verifies either that all edges
have endpoints in both bipartition classes, or verifies thatthe cycle is, in fact, a cycle, that it has
odd length, and that all the edges of the cycle exist in the graph. We come back to this example
in Subsection2.1 where we will show that a simple modification of the standard algorithm for
deciding bipartiteness makes the algorithm certifying.

We put forward the thesis that certifying algorithms are much superior to non-certifying
algorithms and that for complex algorithmic tasks only certifying algorithms are satisfactory.
Acceptance of this thesis would lead to a change of how algorithms are taught and how algo-
rithms are researched. The wide-spread use of certifying algorithms would greatly enhance the
reliability of algorithmic software. In this paper, we survey the state of the art in certifying al-
gorithms, give several new certifying algorithms, and start a theory of certifying algorithms. In
particular, we show that every program can be made weakly certifying without asymptotic loss
of efficiency. This assumes that a correctness proof in some formal system is available.

The usage of certifying algorithms protects not only against incorrect programs, but even
against incorrect algorithms. It allows the use of arbitrarily complicated algorithms and programs
to producey from x, which may be beyond the competence of the user to understand. All that
is required for the user, in order to accept an outputy with the certainty that it has not been
corrupted, is an easy proof of whyw proves thaty is a correct output forx. In particular, there is

5

no need for the user to know that or understand why a certificate exists for all valid input-output
pairs and how this certificate is computed.

The occurrence of an error is recognized immediately when the checker fails to authenticate
the validity of the certificate. This means either thaty was compromised, or that onlyw was
compromised. In either case, the user rejectsy as untrusted. If, in fact, the program is correct,an
occasion never arises when the user has reason to question the program’s output.This is despite
the fact that the correctness of the implementation may not be known with certainty to anybody,
even the programmer.

The reason why the approach is more practical to implement isthat it sidesteps completely
the issue of whether the certifying algorithm is correctly implemented, which is difficult, by
showing only that a particular output is correct, which is often easy. There are nevertheless many
problems for which certifying algorithms are not yet known,and thinking of an appropriate
certificate is an art form that is still developing.

In the discussion above, we used vague terms such as “simple”or “easy to understand”.
We will make these notions more precise in later sections, however, we will not give a formal
definition of certifying algorithm. We hope that the reader will develop an intuitive understanding
of what constitutes a certifying algorithm and what does not, which will allow him to recognize
a certifying algorithm when he sees one.

The designers of algorithms have traditionallyproved that their algorithm is correct. How-
ever, even a sound proof for the correctness of an algorithm is far from a guarantee that an
implementationof it is correct. There are numerous examples of incorrect implementations of
correct algorithms (see Section3).

History:. The notion of a certifying algorithm is ancient. Already al-Kharizmi in his book on al-
gebra described how to (partially) check the correctness ofa multiplication; see Section10.2.
The extended Euclidean algorithm for greatest common divisors is also certifying; see Sec-
tion 2.3. All primal-dual algorithms in combinatorial optimization are certifying. Sullivan and
Masson [SM90, SM91] advocated certification trails as a means for checking the instance cor-
rectness of a program. The seminal work by Blum and Kannan [BK95] on programs that check
their work put result checking in the limelight. There is however an important difference be-
tween certifying algorithms and their work. Certifying programs produce with each output an
easy-to-check certificate of correctness; Blum and Kannan are mainly concerned with check-
ing the work of programs in their standard form. Mehlhorn andNäher were the first to rec-
ognize the potential of certifying algorithms for softwaredevelopment. In the context of the
LEDA project [MN89, MN95], they used certifying algorithm as a technique for increasing
the reliability of the LEDA implementations. The term “certifying algorithm” was first used
in [KMMS06]. Before that Mehlhorn and Näher used the termProgram Checkingor Result
Checking, see [MNS+99, MNU97, MN98]. We give a detailed account of extant work in Sec-
tion 4.

Generality:. How general is the approach? The pragmatic answer is that we know of 100+ cer-
tifying algorithms; in particular, there are certifying algorithms for the problems that are usually
treated in an introductory algorithms course, such as connected and strong connectedness, mini-
mum spanning trees, shortest paths, maximum flows, and maximum matchings. Also, Mehlhorn

6

and Näher succeeded in making many of the programs in LEDA certifying. We give more than
a dozen examples of certifying algorithms in this paper.

The theoretical answer is that every algorithm can be made weakly certifying without asymp-
totic loss of efficiency; however, there are problems that donot have a strongly certifying algo-
rithm; see Section5. A strongly certifying algorithms halts for all inputs. Thewitness proves that
either the input did not satisfy the precondition or the output satisfies the postcondition. It also
tells which of the two alternative holds. A weakly certifying algorithm is only required to halt
for inputs satisfying the precondition. The witness provesthat either the input did not satisfy the
precondition or the output satisfies the postcondition, butit does not tell which alternative holds.
The construction underlying the positive results is artificial and requires a correctness proof in
some formal system. However, the result is also assuring: certifying algorithms are not elusive.
The challenge is to find natural ones.

Relation to Testing and Verification:.The two main approaches to program correctness are pro-
gram testing and program verification.Program testing[Zel05] executes a given program on
inputs for which the correct output is already known by some other means, e.g., by human effort
or by execution of another program that is believed to be correct. However, in most cases, it is
infeasible to determine the correct output for all possibleinputs by other means or to test the
software on all possible inputs. Thus testing is usually incomplete and therefore bugs may evade
detection; testing does not show the absence of bugs. The Pentium bug is an example [BW96].
Certifying programs greatly enhance the power of testing. Acertifying program can be tested on
every input. The test is whether the checker accepts the triple (x,y,w). If it does not, either the
output or the witness is incorrect.

Program verificationrefers to (formal) proofs of correctness of programs. The principles are
well established [Flo67, Hoa69]. However, handwritten proofs are only possible for small pro-
grams owing to the complexity and tediousness of the proof process. Using computer-assisted
proof systems, formal proofs for interesting theorems wererecently given, e.g., for the four-
color theorem [Gon08] and the correctness of an implementation of Dijkstra’s shortest-path al-
gorithm [MZ05]. A difficulty of the verification approach is that, strictlyspeaking, it requires
the verification of the entire hardware and software stack (processor, operating system, compiler)
and that it can only be applied to programming languages for which a formal semantics is avail-
able. For many popular programming languages, e.g.,C, C++, and Java, this is not the case.
The project Verisoft [Ver] undertakes the verification of a complete hardware and software stack.
Checkers are usually much simpler than the algorithms they check. Therefore formal verification
of the checker will be easier than formal verification of the program itself; see [BSM97] for an
example. Moreover, the checker has usually lower asymptotic complexity than the program, and
so the checker could be written in a possibly less efficient language with a formal semantics or
without the use of complex language features.

Organization of Paper:.In the upcoming Section2, we first illustrate the concept on four tutorial
examples suitable for the undergraduate computer-sciencecurriculum (testing whether a graph
is bipartite, determining the number of connected components of a graph, verifying shortest path
distances, and computing greatest common divisors). We then give an example that illustrates a

7

simple certificate for an optimization problem that is complicated to solve (finding a maximum
matching in a general graph). We conclude the section with anaccount of how a bug in the
LEDA module for planarity testing led Mehlhorn and Näher tothe conclusion that certifying
algorithms should be a design principle for algorithmic libraries. In Section3 we give some
examples of program failures in widely distributed software and Section4 discusses extant work.
In Section5 we start a theory of certifying algorithms and formally introduce three kinds of
certifying algorithms. We show that every deterministic program can be made weakly certifying
without asymptotic loss of efficiency. This assumes that a formal proof of correctness is available.
In Section6 we discuss checkers and in Section7 we highlight the advantages of certifying
algorithms. General techniques for the development of certifying algorithms are the topic of
Section8. In Section9 we give further examples of certifying algorithms from a variety of
subfields of algorithmics and also survey the literature on certifying algorithms. Randomized
algorithms and checkers are the topic of Section10. In Section11, we discuss the relation
between certification and verification. Section12 discusses certification in the context of data
structures. Finally, Section13 discusses the implications for teaching algorithms, Section 14
lists some open problems, and and Section15 offers some conclusions.

2. First Examples

2.1. Tutorial Example 1: Testing Whether a Graph is Bipartite

A graphG = (V,E) is calledbipartite if its vertices can be colored with two colors, say red
and green, such that every edge of the graph connects a red anda green vertex. Consider the
function

is bipartite : set of all finite graphs→{0,1},
which for a graphG has value 1 if the graph is bipartite and has value 0 if the graph is non-
bipartite. A conventional algorithm for this function returns a boolean value and so does a con-
ventional program. Does the bit returned by the conventional program really give additional
information about the graph? We believe that it does not.

What are witnesses for being bipartite and for being non-bipartite? What could a certifying
algorithm for testing bipartiteness return? A witness for being bipartite is a two-coloring of the
vertices of the graph, indeed this is the definition of being bipartite. A witness for being non-
bipartite is an odd cycle, i.e., an odd-length sequence of edges(v0,v1), (v1,v2), . . . , (v2k,v2k+1)
forming a closed cycle, i.e.,v0 = v2k+1. Indeed, for alli, the verticesvi andvi+1 must have
distinct colors, and hence all even numbered nodes have one color and all odd numbered nodes
have the other color. Butv0 = v2k+1 and hencev0 must have both colors, a contradiction.

Three simple observations can be made at this point:
First, a two-coloring certifies bipartiteness (in fact, it is the very definition of bipartiteness)

and it is very easy to check whether an assignment of colors red and blue to the vertices of a
graph is a two-coloring.

Second, an odd cycle certifies non-bipartiteness, as we argued above. Also, it is very easy
to check that a given set of edges is indeed an odd cycle in a graph. Observe that, in order to

8

check the certificate for a given input, there is no need to know that a non-bipartite graph always
contains an odd cycle. One only needs to understand, that an odd cycle proves non-bipartiteness.

It is quite reasonable to assume that a programC for testing the validity of a two-coloring and
for verifying that a given set of edges is an odd cycle can be implemented correctly. It is even
within the reach of formal program verification to prove the correctness of such a program.

Let us finally argue that there is certifying algorithm for bipartiteness, i.e., an algorithm that
computes said witnesses. In fact, a small variation of the standard greedy algorithms will do:

1. choose an arbitrary noder and color it red; also declarer unfinished.

2. as long as there are unfinished nodes choose one of them, sayv, and declare it finished. Go
through all uncolored neighbors, color them with the other color (i.e., the color different
from v’s color), and add them to the set of unfinished nodes. Also, record that they got
their color fromv. When step 2 terminates, all nodes are colored.

3. Iterate over all edges and check that their endpoints havedistinct colors. If so, output the
two-coloring. If not, lete= (u,v) be an edge whose endpoints have the same color. Follow
the pathspu andpv of color-giving edges fromu to r and fromv to r; the paths together
with e form an odd cycle. Why? Sinceu andv have the same color, the pathspu andpv

either have both even length (if the color ofu andv is the same as the color ofr) or have
both odd length (if the color ofu andv differs from r ’s color). Thus the combined length
of pu andpv is even and hence the edge(u,v) closes an odd cycle.

We summarize: There is a certifying algorithm for testing bipartiteness of graphs and it is
reasonable to assume the availability of a correct checker for the witnesses produced by this
algorithm.

2.2. Tutorial Example 2: The Connected Components of an Undirected Graph

It is not hard to find the connected components of a graph. However, we show that once they
are found, a witness can be produced that makes it possible tocheck the result even more simply.

We number the components. The witness assigns a pair of nonnegative numbers(i, j) to each
vertexv. The first numberi of the pair is the number of the component to whichv belongs.
The second numberj is the number of the vertex within the component. We number the ver-
tices within a component such that every vertex except for one has a lower numbered neighbor.
Observe that such a numbering proves that every vertex within a component is connected to the
vertex with the smallest vertex number. Figure3 shows an example.

To check this certificate, it suffices to check, for each node,that its labels are nonnegative,
for each edge, that the endpoints have the same component number and distinct vertex numbers
within the component, and to mark the endpoint with the larger number if it is not already marked,
and for each component, that exactly one of its vertices is unmarked.

2.3. Tutorial Example 3: Greatest Common Divisor

The greatest common divisor of two nonnegative integersa andb, not both zero, is the largest
integerg that dividesa andb. We writeg = gcd(a,b). The Euclidean algorithm for computing

9

1,0 1,1

1,31,2

0,40,0

0,1 0,3

0,22,0

Figure 3: A graph with three connected components. The vertices are labelled with pairs(i, j). The first label is
the number of the component to which the vertex belongs and the second label is the number within the component.
Within a component, every vertex has a smaller numbered neighbor except for the vertex numbered zero.

the greatest common divisor is one of the first algorithms invented. In its recursive form it is as
follows.

ProcedureGCD(a,b): a andb are integers witha≥ b≥ 0 anda > 0
If b = 0, returna;
returnGCD(b,a modb);

The Euclidean algorithm is non-certifying. A simple modification, known as the extended
Euclidean algorithm, makes it certifying. In addition, to computingg = gcd(a,b), it also com-
putes integersx andy such thatg = xa+yb. 1

Lemma 1. Let a, b and g be nonnegative integers, a and b not both zero, and let g= xa+yb for
integers x and y. If g divides a and b then g= gcd(a,b).

Proof: Let d be any divisor ofa andb. Then

g = xd
a
d

+yd
b
d

= d

(

x
a
d

+y
b
d

)

and henced dividesg. In particular, gcd(a,b) dividesg. Sinceg dividesa andb, g divides
gcd(a,b). Thusg = gcd(a,b). �

It is easy to extend the recursive procedure above such that it also computes appropriatex
andy: If a > b = 0 then gcd(a,b) = a = 1 ·a+ 0 ·b, and if a > b > 0 and gcd(a modb,b) =
x(a modb) + yb then gcd(a,b) = gcd(a modb,b) = x(a modb)+ yb= x(a−⌊a/b⌋b)+ yb =
xa+(y−⌊a/b⌋)b. This leads to the following recursive program.

1The existence of these integersx andy is referred to as the Lemma of Bézout, as he proved the general statement
for polynomials. In fact, the extended Euclidean algorithmis a certifying algorithm that computes greatest common
divisors in any Euclidean domain.

10

ProcedureEGCD(a,b); assumesa≥ b≥ 0 anda > 0;
returns(g,x,y) such thatg = gcd(a,b) andg = xa+yb.

If b = 0, return(a,1,0);
let (g,y,x) = EGCD(b,a modb); return(g,x,y−⌊a/b⌋).
Thus, to check the correctness of an output of the extended Euclidean algorithm, it suffices

to verify for the provided integersx andy (they constitute the witness) thatg= xa+yband thatg
dividesa andb.

2.4. Tutorial Example 4: Shortest Path Trees

Our next example, the computation of shortest paths, is a basic subroutine in numerous algo-
rithms (see e.g. Subsection10.4). Let G = (V,E) be a directed graph, lets be a special vertex,
the source, and letc : E→ R>0 be a positive cost function on the edges. The costc(p) of a path
p is the sum of the costs of its edges and the cost of a shortest (cheapest) path froms to v is

d(v) = min{c(p) | p is a path froms to v} .

How can we verify that an output functionD :V→R≥0 is equal to the actual distance functiond?
This is easy: if

D(s) = 0 (start value)
for every edge(u,v) D(v) ≤ D(u)+c(u,v) (triangle inequality)
for v 6= s there is an edge(u,v) with D(v) = D(u)+c(u,v) (justification)

thend(v) = D(v) for all v.
Indeed,d(s) = 0 since the empty path has cost zero and any path has nonnegative cost. Thus

d(s) = D(s). We next showD(v)≤ d(v) for all v. Consider anyv 6= sand letv0 = s,v1, . . . ,vk = v
be the path froms to v that definesd(v). Thend(vi+1) = d(vi) + c(vi ,vi+1) for all i ≥ 0 and
D(v0) = 0≤ 0 = d(v0). Assume now that we have shownD(vi)≤ d(vi) for somei ≥ 0. Then

D(vi+1)≤D(vi)+c(vi ,vi+1) triangle inequality

≤ d(vi)+c(vi ,vi+1) sinceD(vi)≤ d(vi)

= d(vi+1)

and so the claim follows by induction. Assume finally, for thesake of a contradiction, that
D(v) < d(v) for somev. Among thev with D(v) < d(v) choose the one with smallestD(v).
SinceD(s) = d(s) = 0, we know thatv 6= s. Then there must be a vertexu such thatD(v) =
D(u)+ c(u,v). Also D(u) < D(v) since edge costs are assumed to be positive. By our choice
of v, D(u) = d(u). Thus there is a path of costD(u) from s to u and hence a path of cost
D(u)+ c(u,v) = D(v) from s to v. Therefore,d(v) ≤ D(v), a contradiction to our assumption
thatD(v) < d(v) for somev.

In order to ease the verification that an output functionD is the distance functiond a certifying
algorithm may for every vertexv indicate the justifying edge(u,v).

Note that the argument above crucially uses the fact that edge weights are positive, see Fig-
ure 4 for an counterexample when edges of weight zero are allowed.In the presence of edges

11

s

u

v

1

0
0

Figure 4: The presence of edges of cost 0 makes stronger justification necessary: The edge(s,u) has cost 1 and the
edges(u,v) and(v,u) have cost 0. Thend(s) = 0 andd(u) = d(v) = 1. However,D(s) = D(u) = D(v) = 0 satisfies
all three conditions sufficient for certification in the caseof a positive cost function.

0 1 0 1

012

0

2

2

1

0

Figure 5: The node labels certify that the indicated matching is of maximum cardinality: All edges of the graph
have either both endpoints labelled as two or at least one endpoint labelled as one. Therefore, any matching can
use at most one edge with two endpoints labelled two and at most four edges that have an endpoint labelled one.
Therefore, no matching has more than five edges. The matchingshown consists of five edges.

of weight zero, a stronger justification required. In this case we require that every vertexv is
assigned an integerk(v), and for every justification edge(u,v) of weight zerok(u) < k(v) holds,
i.e. additionally toD(v) = D(u)+0 we requirek(u) < k(v).

2.5. Example: Maximum Cardinality Matchings in Graphs

The previous examples illustrate what we mean by a certifying algorithm on four simple
examples, but do not illustrate the full potential of the approach, since, e.g., determining whether
a graph is bipartite or determining the connected components of a graph are not difficult problems
to begin with.

We now give a more typical example, which shows how the approach can render trivial the
checking of correctness of an output produced by an implementation of a complex algorithm.
A matchingin a graphG is a subsetM of the edges ofG such that no two share an endpoint.
A matching has maximum cardinality if its cardinality is at least as large as that of any other
matching. Figure5 shows a graph and a maximum cardinality matching. Observe that the
matching leaves two nodes unmatched, which gives rise to thequestion whether there exists a

12

matching of larger cardinality. What is a witness for a matching being maximum cardinality? Ed-
monds [Edm65a, Edm65b] gave the first efficient algorithm for maximum cardinality matchings.
The algorithm is certifying.

An odd-set cover OSCof G is a labeling of the nodes ofG with nonnegative integers such
that every edge ofG is either incident to a node labeled 1 or connects two nodes labeled with the
same numberi ≥ 2.

Theorem 1 ([Edm65a]). Let N be any matching in G and let OSC be an odd-set cover of G. For
any i≥ 0, let ni be the number of nodes labeled i. Then

|N| ≤ n1+ ∑
i≥2
⌊ni/2⌋ .

Proof: For i, i ≥ 2, letNi be the edges inN that connect two nodes labeledi and letN1 be the
remaining edges inN. Then

|Ni| ≤ ⌊ni/2⌋ and |N1| ≤ n1

and the bound follows. �

It can be shown (but this is non-trivial) that for any maximumcardinality matchingM there
is an odd-set coverOSCwith

|M|= n1+ ∑
i≥2
⌊ni/2⌋, (1)

thus proving the optimality ofM. In such a cover allni with i ≥ 2 are odd, hence the name.
The certifying algorithm for maximum cardinality matchingreturns a matchingM and an

odd-set coverOSCsuch that (1) holds. By the argument above, the odd-set cover proves the
optimality of the matching. Observe, that is itnot necessary to understand why odd-set covers
proving optimality exist. It is only required to understandthe simple proof of Theorem1, show-
ing that equation (1) proves optimality. Also, a correct program which checks whether a set of
edges is a matching and a node labelling is an odd-set cover which together satisfy (1) is easy to
write.

2.6. Case Study: The LEDA Planar Embedding Package

A planar embeddingof an undirected graphG is a drawing of the graph in the plane such
that no two edges ofG cross and no edge crosses over a vertex. See Figure6 for an example. A
graph isplanar if it is possible to embed it in the plane in this way. Planar graphs were among
the first classes of graphs that were studied extensively.

A faceof a planar embedding is a connected region of the plane that remains when points on
the embedding are removed. Letn be the number of vertices,m the number of edges, and letf
be the number of faces of a planar embedding. Euler gave what is known asEuler’s formulafor
a connected planar embedded graph:n+ f = m+2 (see Figure6).

The proof of this is frequently used as undergraduate exercise on induction on the number
of edges. As a base case,m= n−1, the graph is a tree, and an embedding of a tree always has

13

Figure 6: The depicted connected planar graph has 8 vertices, 5 faces (including the outer face), and thus 8+5−2=
11 edges.

exactly one face. The formula holds. For the induction step,supposeG is a planar graph with
m> n−1 and the formula holds for all planar embeddings of connected graphs with fewer thanm
edges. Sincem> n−1, G has a cycle. Removal of an edge of the cycle in any planar embedding
of G causes two faces to merge, leavingn′ = n vertices,f ′ = f −1 faces, ande′ = e−1 edges.
By the induction hypothesis, it holds thatn′+ f ′ = e′+2, which impliesn+ f = e+2, and the
formula holds for the original planar embedding ofG.

In the early 1900’s, there was an extensive effort to give acharacterizationof those graphs
that are planar. In 1920, Kuratowski gave what remains one ofthe most famous theorems in
graph theory: a graph is planar if and only if it has nosubdivisionof aK5 or aK3,3 as a subgraph
(see Figure7). TheK5 is the complete graph on five vertices, theK3,3 is the complete bipartite
graph with three vertices in each bipartition class, and a subdivision of a graph is what is obtained
by repeatedly subdividing edges by inserting vertices of degree two on them.

The planarity test in the Library of Efficient Data Structures and Algorithms (LEDA), a
popular package of implementations of many combinatorial and geometric algorithms [MN99,
MN95], played a crucial role in the development of certifying algorithms and the development
of LEDA.

There are several linear time algorithms for planarity testing [HT74, LEC67, BL76]. An
implementation of the Hopcroft and Tarjan algorithm was added to LEDA in 1991. The imple-
mentation had been tested on a small number of graphs. In 1993, a researcher sent Mehlhorn and
Näher a graph together with a planar drawing of it, and pointed out that the program declared the
graph non-planar. It took Mehlhorn and Näher some days to discover the bug.

More importantly, they realized that a complex question of the form “is this graph planar”
deserves more than a yes-no answer. They adopted the thesis that

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

What does this mean for the planarity test?

14

Figure 7: Every non-planar graph contains a subdivision of one of the depicted Kuratowski graphsK5 andK3,3 as a
subgraph. The lower part of the figure shows a non-planar graph. Non-planarity is witnessed by aK3,3.

If a graph is declared planar, a proof should be given in the form of a planar drawing or an
embedding, which the program already did. If a graph is non-planar, the program should not
just declare this; it should supply a proof of this. The existence of an obvious proof is known by
Kuratowski’s theorem: it suffices to point out a Kuratowski subgraph.

Linear time algorithms [Wil84, Kar90] for finding Kuratowski subgraphs were known in
1993; unfortunately, Mehlhorn and Näher found the algorithms too complicated to implement.
There is however a trivial quadratic time algorithm which isvery simple to implement.

for all edgeseof G do
if G\e is non-planarthen

removee from G;
end if

end for
The output of this algorithm is a subgraph of the original graph. The subgraph is non-planar,

since an edge is only removed if non-planarity is preserved,and removal of any edge of it, makes
it planar. Thus the subgraph is a minimal (with respect to edge inclusion) non-planar subgraph
and hence a subdivision of a Kuratowski graph.

Therefore, in 1994, they had a quadratic time certifying algorithm for planarity and a linear
time non-certifying one. They later developed their own certifying linear time algorithm for
finding Kuratowski subgraphs [MN99, Section 8.7].

15

Note that the proof of Kuratowski’s theorem, which is that a subdivision of aK5 or a K3,3
always exists in a non-planar graph, is irrelevant to the protocol for convincing a user that a graph
is non-planar. All that is needed is for the user to understand the following proof:

Lemma 2. A graph that contains a subdivision of K5 or K3,3 is non-planar.

Proof: Subdividing an edge cannot make a non-planar graph planar, so it suffices to show that
K5 andK3,3 are non-planar. Suppose there is a planar embedding ofK5. Each face touches at least
three edges and each edge touches at most two faces. TheK5 has ten edges, so the number of
faces is at most⌊(2/3) ·10⌋= 6. By Euler’s formula, 5+6≥ 10+2, a contradiction. Similarly,
supposeK3,3 has a planar embedding. Since the graph is bipartite, the cycle around each face
must be even, so each face touches at least four edges and eachedge once again touches at
most two faces. The number of faces is at most⌊(2/4)9⌋ = 4. By Euler’s formula we obtain
6+4≥ 9+2, a contradiction. �

Let us now examine the checker. In the case of non-planarity,no matter how the Kuratowski
subgraph is found, a convenient certificate is obtained by returning it as sequences of edges. A
K5 has ten edges, so if the Kuratowski subgraph is a subdivisionof aK5, it consists of ten disjoint
paths sharing five ending vertices. The ending vertices are listed, and the ten paths are each given
as a sequence of edges, in order. The checker verifies that foreach pair of ending vertices there is
a path with these vertices as beginning and end, cycling through the paths, checking and marking
vertices along the way, to make sure that the paths are disjoint except at their endpoints. The
check of aK3,3 is similar.

Let us turn to witnesses of planarity. The obvious witness isa planar drawing. There is
a drawback of using a planar drawing as the witness: It is non-trivial to check in linear time
whether a drawing is actually planar.

A less obvious form of witness is acombinatorial planar embedding, see Figure8. We first
explain, what acombinatorial embeddingis. A combinatorial embedding uses twotwin directed
edges(u,v) and(v,u) for each undirected edge of the graph. These twins have pointers to each
other. For each vertexu of G, the edges incident to it are arranged in a circular linked listL(u). A
combinatorial embedding isplanar if there is a planar embedding ofG in which for each vertex
u the counterclockwise order of the edges incident tou agrees with the cyclic order inL(u).

How does one verify whether a combinatorial embedding is planar? One simply checks
Euler’s relation. A combinatorial embedding gives rise to adecomposition of the directed edges
into a collection of cycles, calledboundary cycles. The boundary cycle containing a particular
directed edge(u,v) is defined as follows. Let(u,v) be a directed edge with twin(v,u) and let
(v,u′) be the directed edge after(v,u) in the circular listL(v). Then(v,u′) is the next edge in
the boundary cycle containing(u,v), cf. Figure8. We continue in this way until we are back at
(u,v). Why are we guaranteed to come back to where we started? To establish this, it suffices to
note that the edge preceding(u,v) in the boundary cycle is also uniquely defined. Let(u,v′) be
the edge before(u,v′) in L(u) and let(v′,u) be the twin of(u,v′). Then(v′,u) precedes(u,v) in
the boundary cycle containing it.

16

a b

c

d

e
vertex

counterclockwise
cyclic adjacency list

a 〈b〉
b 〈a,c,d〉
c 〈d,b〉
d 〈b,c,e〉
e 〈d〉

Figure 8: A planar graph and the corresponding planar combinatorial embedding: For each vertex, the incident
edges are listed in counterclockwise order. The boundary cycles are(a,b),(b,d),(d,e),(e,d),(d,c),(c,b),(b,a)
and(c,d),(d,b),(b,c). Observe that the successor of(d,e) is determined as follows: go to the twin(e,d) and then
to the next edge in cyclic order, i.e.,(e,d).

Lemma 3. Let G be a connected graph with n> 1 vertices, and m edges. Then a combinatorial
embedding of G with f boundary cycles is planarif and only if n+ f = m+2.

Proof: As before, we argue by induction on the number of edges. As a base case,m= n−1
and the graph is a tree. Any combinatorial embedding of a treeis planar and gives rise to a single
boundary cycle; hencef = 1 andn+ f = m+2.

For the induction step, letI be a combinatorial embedding of a connected graphG with m>
n−1 edges, and we assume by induction that the lemma applies to all combinatorial embeddings
of graphs withm−1 edges. Iff = 1, then the embedding cannot be planar, sinceG has a single
boundary cycle and any planar drawing has more than one face in accordance with the fact that
n+ f = m+2 does not hold.

Supposef ≥ 2. We claim that there must be an edgee= {(u,v),(v,u)} such that(u,v) and
(v,u) lie on different boundary cycles; otherwise, the edges in cyclic order around each vertex
are forced to be in the same boundary cycle, and sinceG is connected, there is only one boundary
cycle, a contradiction. LetG′ = G−e and letI ′ be the combinatorial embedding ofG′ obtained
by removinge from I . This merges two boundary cycles into one, call itC, soI ′ has f ′ = f −1
boundary cycles,m′ = m−1 edges, andn′ = n vertices. By basic algebra,I ′ satisfies the formula
if and only if I does. By the induction hypothesisI ′, henceI , satisfies the formula if and only if
I ′ is planar. IfI ′ is not planar, then neither isI , sinceI ′ is a subembedding. IfI ′ is planar, then
C is the boundary of a face, sayF, in some planar drawingD′ of G′ corresponding toI ′. Since
u andv are onC, F can be subdivided inD′ by drawing the edge{u,v} so that it is internal toF
except at its endpoints. This yields a planar drawingD corresponding toI , soI is planar. �

So in the case of a planarity a convenient witness is a combinatorial embedding ofG. The
checker determines the numberf of boundary cycles of the combinatorial embedding and accepts
the combinatorial embedding ifn+ f = m+2.

The example illustrates that the reason why a certificate always exists (the proof of Kura-
towski’s theorem in this case) is irrelevant to the protocolfor convincing a user that a particular
output is correct. All that is needed is for the user to understand the proofs of Lemmas2 and3.

17

What does the case study performed in this section illustrate about the current state of algo-
rithm design and software engineering? The algorithm on which the program was based is well-
known to be correct. Obviously, the programmer made a mistake in implementing it. However,
another problem was that users were willing to accept a declaration that a graph was non-planar,
based partly on the knowledge that it was based on an algorithm that is well-known to be correct.

Additionally, another problem was that the designers of algorithms traditionally consider
their work done when they have produced a proof that their algorithm never produces an incor-
rect output. It has gone unrecognized in the algorithm-design community that, in view of the
implementation obstacles, algorithm design should also assist the process of obtaining a correct
implementation.

3. Examples of Program Failures

To emphasize the importance of methods that facilitate reliability of computation, we give
some examples of failures in algorithmic software. The failures are either bugs or due to the
use of approximate arithmetic. The first kind of failure shows that even in prevalent, widely
distributed programs software bugs have historically appeared. Of course, once bugs become
known, they are repaired and hence the bugs reported here do no longer exist in the current
version of the programs.

Planarity Test in LEDA 2.0:.As extensively illustrated in Subsection2.6, the planarity test in
LEDA 2.0 was incorrect. It declared some planar graphs non-planar. Mehlhorn and Näher cor-
rected the error in LEDA 2.1 and made the planarity test certifying. This was their first use of a
certifying algorithm. However, the first solution was far from satisfying, as the running time of
the certifying algorithm was quadratic compared to linear time for the non-certifying algorithm.
It took some time to develop an equally efficient certifying algorithm.

Triconnectivity of Graphs:.A connected graph is triconnected if the removal of any pair of
vertices does not disconnect it. There are linear-time algorithms for deciding triconnectivity of
graphs [HT73, MR92]. Gutwenger and Mutzel [GM00] implemented the former algorithm and
reported that some non-triconnected graphs are declared triconnected by it. They provided a
correction. We come back to this problem in Section9.8.

Constrained Optimization in Mathematica 4.2:.Version 4.2 of Mathematica (a software environ-
ment for mathematical computation) fails to solve a small integer linear program; the example is
so small that we can give the full input and output. The first problem asks to compute the mini-
mum of the functionx subject to the constraintsx = 1 andx = 2. The system returns the optimal
value is 2 and that the substitutionx→ 2 attains it. The second problems asks to maximize the
function under the same constraints. The system answers that the optimal value is infinite and
thatx has an indeterminate value in this solution.

In[1] := ConstrainedMin[x , {x==1,x==2} , {x}]
Out[1] = {2, {x->2}}
In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]

18

ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

Pentium Bug:.A version of the Pentium chip contained an error in the hardware for division [BW96].
This hardware error was caused by an incomplete lookuptable.

Linear Programming:.A linear optimization problem is the task to maximize or minimize a
linear objective function subject to a set of linear constraints. In mathematical language,

maxcTx subject to Ax≤ b andx≥ 0.

wherex is ann-vector of real variables,c is a realn-vector,A is anm×n matrix of reals andb
is a realm-vector. A large number of important problems can be formulated as linear programs,
see Section8.2 for some examples. In applications of linear programming, the entries ofc,
A and b are rational. Linear programming solvers such as CPLEX or SOPLEX use floating
point arithmetic for their internal computations and henceare susceptible to round-off errors.
The solvers do not claim to find the optimal solution for all problem instances. Of course, a
user would like to know whether the solution for his/her particular instance is correct. The
papers [DFK+03, ACDE07], see also Section8.2, discuss how solutions to linear programs can
be verified. They also give examples of instances for which popular solvers such as CPLEX and
SOPLEX fail.

Geometric Software:.Geometric software is a particular challenge for correctness. Algorithms
are formulated for a Real RAM, i.e., a machine that can compute with real numbers, but programs
run on machines that offer only floating point and integer arithmetic on bounded length numbers.
The gap is hard to bridge; see [KMP+08] for some illustrative examples of how geometric pro-
grams can fail. Reliable geometric computing is now an active area of research [Yap03, CGA,
HL04]. Section9.1discusses certification of geometric software.

. Needless to say, most bugs in current software are unknown. In fact it is quite natural to assume
that no large software library is flawless. Certifying algorithms may detect these flaws, but more
imporatantly they assure us that the currently given answeris correct. Before we discuss further
advantages of certifying algorithms in Section7, we discuss the relation to extant work and
concretize our definition of certifying algorithms.

4. Relation to Extant Work

Program correctness is one of the major problems in softwareengineering. The theoret-
ically most satisfying approach to program correctness is formal verification. The program
is formulated in a language with well-defined semantics, pre- and postcondition are formu-
lated in some formal system, and the proof of correctness is carried out in this formal sys-
tem (and with the help of a theorem prover). Work on program verification started in the late
’60s [Flo67, Hoa69, Hoa72] and tremendous progress was made since then [Ver]. Unfortunately,
the verification of complex algorithms written in popular programming languages such asC,
C++ or Java is still beyond the state of the art.

19

Program testing is the most widely used approach to program correctness, see [Zel05] for a
recent account. A list of correct input/output pairs(xi ,yi) is maintained. A program is accepted
if, for eachxi on the list, it produces the correspondingyi . The common objections against testing
are that it can prove the presence of errors, but never their absence, and that a program can only
be tested on inputs for which the correct output is already known by other means.

It has been known since the 1950’s that linear programming duality [Chv93, Sch03] provides
a method for checking the result of linear programs. In a pairof solutions(x,x), one for a linear
program and one for its dual, both solutions are optimal if and only if they have the same objective
value, see Subsection8.2. A special case of linear programming duality is the max-flow-min-cut
theorem for network flows.

Sullivan and Masson [SM90, SM91, BS95, BSM95, SWM95, BS94] introduced the concept
of a certification trail for checking. The idea is that a program leaves a trail of information that
can be used to check whether it worked correctly. They applied the idea mainly to data structures.
In later work [BSM97], they combined certification trails with formal verification. We discuss
checking of data structures in Section12. Certification trails catch errors ultimately, but not
immediately.

Blum and Kannan [BK89, BK95] started a theory of program checking; see [Blu93, BW94,
BLR90, WB97, BW96] for follow-up work. Given a programP allegedly computing a func-
tion2 f , how can one check whetherP(x0) = f (x0) for a particular inputx0. A checkerC
is a probabilistic expected-polynomial-time oracle machine (it usesP as a subroutine) with
the property: ifP(x) = f (x) for all x, thenC on input x0 accepts with high probability. If
P(x0) 6= f (x0), C on inputx0 rejects with high probability. IfP(x0) = f (x0), but P 6= f , the
checker may accept or reject. They describe, among others, checkers for graph isomorphism, the
extended gcd, and sorting reals. In [BLR90] the concept is generalized to self-correcting algo-
rithms. For example, assumeadd is a function that correctly adds for most pairs of inputs. Then
add(x,y) = add(add(x, r),add(y,−r)), wherer is a random number, correctly adds all pairs with
nonzero probability, since the concrete additionx+y is replaced by three random additions.

There are essential differences between certifying algorithms and the work by Blum et al.
First, they mention but do not explore that adding additional output (= our witness) may ease
the life of the checker; they give the extended gcd and maximum flow as examples. In contrast,
we insist that certifying programs return witnesses that prove the correctness of their output.
In exceptional cases, the witness may be trivial. The secondessential difference is that they
allow checkers to be arbitrarily complex programs (as long as they are polyomial-time) and
nevertheless assume checkers to be correct. In constrast, we insist that checkers are simple
program and assume that only the simplest programming taskscan be done without error; see
Subsection6.1.

Our approach has already shown its usefulness in the LEDA project [LED]. At the time of
this writing, LEDA contains checkers for all network and matching algorithms (mostly based on
linear programming duality), for various connectivity problems on graphs, for planarity testing,
for priority queues, and for the basic geometric algorithms(convex hulls, Delaunay diagrams,

2They consider only programs with trivial preconditions

20

and Voronoi diagrams). Program checking has greatly increased the reliability of the implemen-
tations in LEDA. There are many other problems for which certifying algorithms are known. We
review some of them in the sections to come and give a guide to the literature in Subsection9.8.

Proof-carrying code [NL96, Nec97] is a “mechanism by which a host system can determine
with certainty that it is safe to execute a program supplied by an untrusted source. For this to
be possible, the untrusted code producer must supply with the code a safety proof that attests to
the code’s adherence to a previously defined safety policy. The host can then easily and quickly
validate the proof (quote from [Nec97])”. We will use methods akin to proof-carrying code in
Section5.

An interactive proof system [GMR89] is a protocol that enables a verifier to be conviced
by a prover of some output via a series of message exchanges. In the language of certifying
algorithms, their execution needs a bidirectional communication between the checker and the
certifying algorithm. However, to be in accordance with therequirements we pose onto certifying
algorithms, further simplicity constraints have to be introduced. If done so, they constitute an
extension of certifying algorithms that carries several, but not all of the advantages of certifying
algorithms mentioned in Section7.

5. Definitions and Formal Framework

We consider algorithms taking an input from a setX and producing an output in a setY. The
inputx∈ X is supposed to satisfy a precondition3 ϕ(x) and the input together with the outputy∈
Y is supposed to satisfy a postconditionψ(x,y). Hereϕ : X→{T,F } andψ : X×Y→{T,F }.
We call the pair(ϕ,ψ) an I/O-specificationor an I/O-behavior.

In the case of graph bipartition for example, we haveY = {bipartite,nonbipartite}. With
respect toX, we can take different standpoints. As an algorithm designer or a programmer using
a strongly typed programming language, we could takeX as the set of all finite undirected graphs.
Thenϕ(x) = T for all x∈ X andψ(x,y) = T iff

x is a bipartite graph andy = bipartite or
x is a non-bipartite graph andy = nonbipartite.

As a programmer using Turing machines or an untyped programming language, we would take
X as the set of all conceivable inputs, sayΣ∗ in the case of Turing machines or all memory
states in the case of the untyped programming language. Thenϕ(x) = T iff x is the well-formed
representation of an undirected graph andψ(x,y) = T iff the precondition is true and

x represents a bipartite graph andy = bipartite or
x represents a non-bipartite graph andy = nonbipartite.

In all examples considered in this paper, it is easy to check whether representations are well-
formed. We can therefore safely ignore the issue of input representation in most of our discus-
sions.

3For a predicateP : X→{T,F }, we use “x satisfiesP” or P(x) = T interchangeably. Similarly, we useP(x) = F
andx does not satisfyP interchangeably. In formulae we writeP(x) for P(x) = T and¬P(x) for P(x) = F .

21

We specifically allow the possibility that a pair(x,y) of input and output satisfies the post-
condition, even thoughx does not satisfy the precondition. We will next define three kinds of
certifying algorithms: strongly certifying, certifying,and weakly certifying algorithms. In the
case of a trivial precondition, i.e.,ϕ(x) = T for all x, the three notions coincide.

5.1. Strongly Certifying Algorithms

Strongly certifying algorithms are the most desirable kindof algorithm. On every input, a
strongly certifying algorithm proves to its users that it worked correctly or that the user provided
it with an illegal input; it also says which of the two alternative holds. More precisely, for any
inputx, it either produces a witness showing thatx does not satisfy the precondition or it produces
an outputy and a witness showing that the pair(x,y) satisfies the postcondition. For technical
reasons, in the first case, we want the algorithm to also produce an answering output, in addition
to the witness. We could have it return an arbitrary output but find it more natural to extend the
output setY by a special symbol⊥ and use⊥ as an indicator for a violated precondition. We call
Y⊥ := Y∪{⊥} theextended output set. We useW to denote the set of witnesses.

A strong witness predicatefor an I/O-specification(ϕ,ψ) is a predicateW : X×Y⊥×W→
{T,F } with the following properties:

Strong witness property: Let (x,y,w) ∈ X×Y⊥×W satisfy the witness predicate. Ify =⊥, w
proves thatx does not satisfy the precondition and ify∈Y, w proves that(x,y) satisfies the
postcondition, i.e.,

∀x,y,w (y =⊥ ∧W (x,y,w)) =⇒ ¬ϕ(x) and
(y∈Y∧W (x,y,w)) =⇒ ψ(x,y)

(2)

Checkability: For a triple(x,y,w) it is trivial to determine the valueW (x,y,w).

Simplicity: The implications (2) have a simple proof.

For the moment, we want to leave the checkability and the simplicity property informal
notions. We invite the reader to check our examples against his/her notion of simplicity and
checkability. We discuss this further in Subsection5.5.

A strongly certifying algorithmfor I/O-specification(ϕ,ψ) and strong witness predicateW
is an algorithm with the following properties:

• It halts for all inputsx∈ X.

• On inputx∈ X it outputs ay∈Y⊥ and aw∈W such thatW (x,y,w) holds.

We illustrate the definition with two examples. The first example is the test for bipartiteness
already used in the introduction. Here,X is the set of all undirected graphs and the precondition
is trivial. Any graph is a good input. The output set isY = {YES,NO}. If the output is YES,
the witness is a 2-coloring, if the output is NO, the witness is an odd cycle.

Next, we give an example, where the precondition is non-trivial. We describe a strongly
certifying algorithm that five-colors any planar graph. Thealgorithm does not decide planarity.

22

So X is the set of undirected graphs. We useG to denote an input graph. The precondition is
thatG is planar. For a planar graphG = (V,E), the algorithm is supposed to color the vertices
of G with five colors such that any two adjacent vertices have distinct colors, i.e., the algorithm
constructs a mappingc : V → {1,2,3,4,5} such that for any edgee= (u,v) ∈ E, c(u) 6= c(v).
For a non-planar graph, the algorithm will either prove non-planarity or provide a 5-coloring.
Non-planarity is proven by exhibiting a sequence of planarity preserving transformations that
transform the input graph to a graph that is clearly non-planar. Consider the following recursive
algorithm. IfG has at most five vertices, the algorithm returns a coloring. So assume thatG has
more than five vertices. IfG has more than 3n−6 edges, the algorithm declares the graph non-
planar. The witness is the number of edges. IfG has at most 3n−6 edges,G must have a vertex
of degree five or less. Letv be such a vertex. Ifv has degree four or less, the algorithm removes
v from the graph and calls itself onG− v. Clearly, removal of a vertex preserves planarity. If
the recursive call returns a five coloring, it is easily extended toG. If v has degree five, consider
the neighbors ofv. If the neighbors ofv form a K5, return it as a witness for non-planarity.
Otherwise, there must be two neighbors, sayx andy, that are non-adjacent. Removev from the
graph, identifyx andy, and remove any parallel edges this may create. It is crucialto observe
here that removal ofv and identification ofx andy, does not destroy planarity. This is easy to
see by conceptualizing a planar drawing and performing the operation there. If the recursive
call returns a five-coloring, it is easy to extend it toG. We use forx andy the color that was
given to their contraction in the smaller graph and we give a color that was not used on the
neighbors ofv for v. In this way, we either find a coloring of the input graphG or a sequence
of planarity preserving reductions to a graphG′ that is clearly non-planar; either because it has
too many edges or because it contains aK5. For any planar graph, the algorithm will produce a
five-coloring. It also will produce five-colorings of some non-planar graphs. For example, it will
color aK5. If the algorithm fails to find a five-coloring, it produces a witness that the input graph
is non-planar. Note that the algorithm does not decide whether the precondition (that the graph
is planar) was met.

5.2. Certifying Algorithms

In some situations, we have to settle for less. The algorithmwill only prove that either the
precondition is violated or the postcondition is satisfied.It will, in general, not be able to also
indicate which of the alternatives holds.

As an example, consider binary search. Its input is a numberz and an arrayA[1..n] of num-
bers. The precondition states thatA is sorted in increasing order. The search outputs YES, ifz is
stored in the array, and it outputs NO, ifz is not stored in the array. In the former case, a witness is
an indexi such thatA[i] = z, in the latter case, a witness is an indexi such thatA[i−1] < z< A[i];
hereA[0] =−∞ andA[n+1] = +∞ for convenience. Binary search maintains two indicesℓ andr
with A[ℓ] < z< A[r] andℓ < r. Initially, ℓ = 0 andr = n+1. As long asr > ℓ+1, it compares
z with A[m], wherem= ⌊(r + ℓ)/2⌋. If z= A[m], the algorithms stops. Ifz< A[m], r is set to
m and the algorithms continues. Ifz> A[m], ℓ is set tom and the algorithm continues. Observe
that binary search does not discover any violation of its precondition. In fact discovering all
violations would require linear time in general. This example leads us to the definition of an
(ordinary) certifying algorithm:

23

A witness predicatefor an I/O-specification(ϕ,ψ) is a predicateW : X×Y⊥×W→{T,F }
with the following properties:

Witness property: Let (x,y,w) satisfy the witness predicate. Ify =⊥, w proves thatx does not
satisfy the precondition. Ify∈Y, w proves thatx does not satisfy the precondition or(x,y)
satisfies the postcondition, i.e.,

∀x,y,w (y =⊥ ∧W (x,y,w)) =⇒ ¬ϕ(x) and
(y∈Y∧W (x,y,w)) =⇒ ¬ϕ(x)∨ψ(x,y)

(3)

The second implication may also be written asy∈Y∧ϕ(x)∧W (x,y,w) =⇒ ψ(x,y).

Checkability: For a triple(x,y,w) it is trivial to determine the valueW (x,y,w).

Simplicity: The implications (3) have a simple proof.

In the case of binary search,X is the set of pairs(A,z) whereA is an array of numbers andz
is a number,Y is {YES,NO} andW is {0..n}. For(A,z) ∈ X, y∈Y⊥ andw∈W, we have

W (x,y,w) = T iff

{

y = YES∧w = i ∈ {1..n}∧z= A[i] or

y = NO∧w = i ∈ {0..n}∧A[i] < z< A[i +1]

A certifying algorithmfor I/O-specification(ϕ,ψ) and witness predicateW is an algorithm
P with the following properties:

• It halts for all inputsx∈ X.

• On inputx∈ X it outputs ay∈Y⊥ and aw∈W such thatW (x,y,w) holds.

5.3. Weakly Certifying Algorithms

Sometimes, we have to settle for even less. Aweakly certifying algorithmfor I/O-specification
(ϕ,ψ) and witness predicateW is an algorithm with the following properties:

• It halts for all inputsx∈ X satisfying the precondition. For inputs not satisfying thepre-
condition, it may or may not halt.

• If it halts on inputx∈ X, it outputs ay∈Y⊥ and aw∈W such thatW (x,y,w) holds.

As an example, consider a naive randomized SAT-solver: It isgiven a formulax, of which it
is supposed to prove satisfiability. In other words our precondition is

ϕ(x) = (x is a satisfiable boolean formula) .

It tries random assignments until is has found a satisfying assignmentw. It then outputsy= YES,
together withw as a witness. Checking the satisfiability ofx is trivial; w proves it. This algo-
rithm is certifying, however since it does not halt on unsatisfiable input clauses it is only weakly
certifying. A more sophisticated example is the random SAT-solver analyzed by Moser [Mos09],
which finds satisfying assignments of certain sparse SAT-clauses in polynomial time.

24

Theorem 2. Let (ϕ,ψ) be an I/O-specification. A certifying decision algorithm for ϕ plus a
weakly certifying algorithm for behavior(ϕ,ψ) can be combined to a strongly certifying algo-
rithm for behavior(ϕ,ψ).

Proof: Let x be any input. We first run the certifying decision algorithm for ϕ. It returns
y= ϕ(x) ∈ {T,F } and a witnessw certifying the correctness of the output. Ify is F, we return⊥
andw as a witness for¬ϕ(x). If y is T, we run the weakly certifying algorithm for I/O-behavior
(ϕ,ψ) on x. Sinceϕ(x), the algorithm returns ay′ with ψ(x,y′) and a witnessw′ certifying the
correctness of the output. We returny′ andw′. �

5.4. Efficiency

We call a certifying algorithmP efficientif there is an accompanying checkerC, such that
the asymptotic running of bothP andC is at most the running time of the best known algorithm
satisfying the I/O-specification. All examples we have treated so far are efficient. We now give
an example, where no efficient certifying algorithm is known. The 3-connectedness problem asks
whether a graph may be disconnected by removing two vertices. Linear time algorithms [HT73,
MR92] for this problem are known, but none of them is certifying.

Certifying that a graph is not 3-connected is simple, it suffices to provide a setSof vertices,
|S| ≤ 2, such thatG\S is not connected. To certify that their removal disconnectsthe graph we
can, for example, use the algorithm that certifies the connected components (see Subsection2.2).
Thus, we now focus on 3-connected graphs and describe anO(n2) algorithm that certifies 3-
connectivity (a different certifyingO(n2) algorithm can be found in [Sch10]). We omit details
on how to find a separating set during the execution of the algorithm, in case the input graph is
not 3-connected. As certificate for 3-connectivity we will use a sequence of edge contractions
resulting in theK4, the complete graph on 4 vertices. Thecontractionof an edgee= xy of a
graphG is the graphG/e obtained by replacingx andy with a single vertex, whose neighbors
areN(x)∪N(y)\{x,y}. We call an edgeeof a 3-connected graphG contractibleif the contracted
graphG/e is 3-connected. A separating pair is a pair of vertices whoseremoval disconnects the
graph.

Lemma 4. Let e= (x,y) be an edge of a simple graph G whose end-vertices have a degreeof at
least3. If G/e is 3-connected, then G is 3-connected.

Proof: Since contractions cannot connect a disconnected graph, the original graphG is con-
nected. There are no cut-vertices inG, as they would map to cut-vertices inG/e.

Any separating pair ofG must contain one of the end-vertices of edgee. Otherwise the pair
is also separating inG/e. It cannot contain bothx andy, otherwise the contracted vertexxy is
a cut-vertex inG/e. It suffices now to show thatx,u, with u∈V(G) \ y is not a separating pair.
Suppose otherwise, then the graphG−{x,u} is disconnected, but the graphG−{x,y,u} is not.
Thus{y} is a component ofG−{x,u}. But this is a contradiction sincey has degree at least 3
in G. �

25

To certify the 3-connectivity of a graphG, it thus suffices to provide a sequence of edges
which, when contracted in that order, have endpoints with a degree of a least 3 and whose con-
traction results in aK4. We call such a sequence aTutte sequence. We now focus on how to find
the contraction sequence, given a 3-connected graph.

TheO(n2) algorithm needs three ingredients: First we require theO(n2) algorithm by Nag-
amochi and Ibaraki [NI92] that finds a sparse spanning 3-connected subgraph ofG with at most
3n−6 edges. Second we require a linear time algorithm for 2-connectivity. Third we require a
structure theorem, that shows how to determine a small candidate set of edges among which we
find a contractible edge.

Theorem 3 (Krisell [Kri02]). If no edge incident to a vertex v of a 3-connected graph G is
contractible, then v has a least four neighbors of degree 3, which each are incident with two
contractible edges.

Consider now a vertexv of minimal degree in a 3-connected graph. If it has degree three, it
cannot have four neighbors of degree three and hence must have an incident contractible edge.
If it has degree four or more, it cannot have a neighbor of degree three (because otherwise, its
degree would not be minimal) and hence must have an incident contractible edge. Also note that
an edgexy in a 3-connected graph is contractible, ifG−{x,y} is 2-connected.

We explain how to find the firstn/2 contractions in timeO(n2). By repeating the procedure
we obtain an algorithm that has overall a running time ofO(n2).

First use the algorithm by Nagamochi and Ibaraki [NI92]. The resulting graph has 3n−6
edges. Thus while performing the firstn/2 contractions, there will always be a vertex with
degree at most 2·2 ·3 = 12. Choosing a vertex of minimal degree, we obtain a set of at most 12
candidate edges, one of which must be contractible. To test whether an edgexy is contractible,
we check whetherG−{x,y} is 2-connected with some linear time algorithm for 2-connectivity.

Theorem 4 ([Sch10]). A Tutte sequence for a 3-connected graph can be found in time O(n2).

It remains a challenge to find a linear time certifying algorithm for 3-connectivity of graphs.
A linear time certifying algorithm for graphs 3-connectivity of Hamiltonian graphs was recently
found [EMS10]; it assumes that the Hamiltonian cycle is part of the input.

Efficiency and Usefulness:.For some problems, e.g., testing bipartiteness, maximum flow, match-
ings, and min-cost flows, the best known algorithms are certifying and the cost of checking the
witness is negligible compared to the cost of computing it. For such programs, it is best to in-
tegrate the checker into the program. For other problems, e.g., planarity testing, certification
increases running time by a non-negligible multiplicativefactor (more than 2 and less than 10).
Finally, there are problems, such as triconnectivity, where the best known certifying algorithm
has worse asymptotic complexity than the best known non-certifying algorithm. Even for the
latter kind of problem, certification is useful for two reasons. First, one can use the certifying
version to generate test instances for the non-certifying version, and second, for small instances
the slow certifying version may be fast enough.

26

5.5. Simplicity and Checkability

The definition of a certifying algorithm and its variants involve two non-mathematical terms
that we have not made precise: simplicity and checkability.They guarantee that it is “easy to
check” whether a witnessw shows that an output is correct for a given input. We now elaborate
on these terms.

Checkability:. Given x, y, andw, we require that it is trivial to determine whetherW (x,y,w)
holds. We list a number of conceivable “formalizations” of “being trivial to determine”.

• There is a decision algorithm forW that runs in linear time.

• W has a simple logical structure. For example, we might require thatx, y, andw are
strings, thatW is a conjunction ofO(|x|+ |y|+ |w|) elementary predicates and that each
predicate tests a simple property of relatively short substrings.

• There is a simple logical system, in which we can decide whetherW (x,y,w) holds.

• The correctness of a program decidingW (x,y,w) is obvious or can be established by an
elementary proof.

• We can formally verify the correctness of the program decidingW (x,y,w).

Most witness predicates discussed in this article satisfy all definitions above. In Section6 we
further investigate checkers, i.e., programs that determine the value of a witness predicateW .

Simplicity:. The witness property is easily verified, i.e., the (equivalent) implications

∀x,y,w W (x,y,w)→ ψ(x,y) (4)

∀x,y ¬ψ(x,y)→6 ∃w W (x,y,w) . (5)

have an elementary proof. Here, we assumed that the precondition is trivial. For the case of a
non-trivial precondition, either statement (2) or (3) should have an elementary proof (the former
in the case of a strongly certifying algorithm, the latter inthe other cases). We find that all witness
predicates discussed in this article fulfill the simplicityproperty.

Observe that we make no assumption about the difficulty of establishing the existence of a
witness. In the case of a strongly certifying or certifying algorithm, this would be the statement

∀x ∃y,w W (x,⊥,w)∨W (x,y,w) .

In the case of a weakly certifying algorithm this would be thestatement

∀x ϕ(x) =⇒ (∃y,w W (x,⊥,w)∨W (x,y,w)) .

Indeed, the existence of witnesses is usually a non-trivialmathematical statement, and its com-
putation a non-trivial computational task. For example, itis non-trivial to prove that a non-planar
graph necessarily contains a Kuratowski subgraph (Subsection 2.5) and is non-trivial to prove

27

that a maximum matching can always be certified by an odd-set cover (Subsection2.6). Fortu-
nately, a user of a certifying algorithm does not need to understand why a witness exists in all
cases. He only needs to convince himself that it is easy to recognize witnesses and that a witness,
indeed, certifies the correctness of the algorithm on the given instance.

The “definition” above rules out some obviously undesirablesituations:

1. Assume we have a complicated programP for I/O-behavior(ϕ,ψ). We could takew as
the record of the computation ofP on x and defineW (x,y,w) as “w is the computation of
P on inputx andy is the output of this computation”. IfP is correct, thenW is a witness
predicate. This predicate certainly satisfies the checkability requirement. However, it does
not satisfy the simplicity requirement, since a proof of thewitness property is tantamount
to proving the correctness ofP.

2. Another extreme is to defineW (x,y,w) as “ψ(x,y)”. For this predicate simplicity is triv-
ially given. However, decidingW amounts to a solution of the original problem.

As our definition is not and cannot be made mathematically stringent, whether an algorithm
should be accepted as certifying is a matter of taste. However, if we drop our non-mathematical
requirement of “easiness to check”, we can ask formal questions on the existence of certifying
algorithms.

Question 1. Does every computable function have a certifying algorithm.

A more stringent version of this question asks, in addition,about the resource requirements
of the certifying program.

Question 2. Does every program P have an efficient strongly certifying orcertifying or weakly
certifying counterpart, i.e., a counterpart with essentially the same running time?

More precisely, letP be a program with I/O-behavior(ϕ,ψ). An efficient strongly certifying
counterpart would be a programQ and a predicateW such that

1. W is a strong witness predicate for(ϕ,ψ).

2. On inputx, programQ computes a triple(x,y,w) with W (x,y,w).

3. On inputx, the resource consumption (time, space) ofQ on x is at most a constant factor
larger than the resource consumption ofP.

For an ordinary certifying counterpart, we would replace strong witness predicate by witness
predicate in the first condition. For a weakly certifying counterpart, we would additionally re-
place the second condition by the following: ifQ halts onx, it computes a triple(x,y,w) with
W (x,y,w), and ifϕ(x) thenQ halts onx. We address these questions in the next two subsections.

28

5.6. Deterministic Programs with Trivial Preconditions

We show that every deterministic program that has a trivial preconditionϕ(x) = T for all x
can be made certifying with only a constant overhead in running time. This sounds like a very
strong result. It is not really; the argument formalizes theintuition that a formal correctness
proof is a witness of correctness. The construction shows some resemblance to proof-carrying
code [NL96].

Let ψ be a postcondition and letP be a program (in a programming languageL with well-
defined semantics) with I/O-behavior(T,ψ). We assume that we have a proof (in some formal
systemS) of the fact thatP realizes(T,ψ), i.e., a proof of the statement4

∀x P halts on inputx andψ(x,P(x)) . (6)

We usew2 to denote the proof.
We extendP to a programQ which on inputx outputsP(x) and a witnessw = (w1,w2,w3)

wherew1 is the program textP, w2 is as above, andw3 is the computation ofP on inputx.
The witness predicateW (x,y,w) holds if w has the required format, i.e.,w = (w1,w2,w3),

wherew1 is the program text of some programP, w2 is a proof inS thatP realizes I/O-behavior
(T,ψ), w3 is the computation ofP on inputx, andy is the output ofw3. The following statements
show that algorithmQ is an efficient certifying algorithm:

1. W is a strong witness predicate for I/O-behavior(T,ψ):

• Checkability: The check whether a triple(x,y,w) satisfies the witness predicate is
easy. We use a proof checker for the formal systemS to verify thatw2 is a proof for
statement (6). We use an interpreter for the programming languageL to verify that
w3 is the run ofP on inputx and thaty = P(x).

• Strong witness property and Simplicity:The proof of the implicationW (x,y,w)⇒
ψ(x,y) is elementary: AssumeW (x,y,w). Thenw = (w1,w2,w3), wherew1 is the
program text of some programP, w2 is a proof (in systemS) that P realizes I/O-
behavior(T,ψ), w3 is the computation ofP on inputx, andy is the output ofw3.
Thusy = P(x) andψ(x,P(x)).

2. For every inputx algorithmQ computes a witnessw with W (x,P(x),w). This follows from
the definition ofQ.

3. The running time ofQ is asymptotically no larger than the running time ofP. The same
holds true for the space complexity. Observe thatQ produces a large output; however, the
workspace requirement is the same as forP. The same is true for the checker described in
the checkability argument.

We summarize the discussion.

4We useP(x) to denote the output ofP on inputx.

29

Theorem 5. Every deterministic program forI/O-specification(T,ψ) has an efficient strongly
certifying counterpart. This assumes that a proof for (6) in a formal system is available.

We admit that the construction above leaves much to be desired. It is not a practical way of
constructing certifying algorithms. After all, certifying programs are an approach to correctness
when a formal correctness proof is out of reach. A frequent reaction to Theorems5 and7 is that
they contradict intuition. In fact, we also started out wanting to prove the opposite. In an attempt
to prove that some algorithms cannot be certifying without loss of efficiency, we discovered
Theorem5. We come back to this point in Section14.

However, the construction is also quite assuring and gives strong moral support. Every deter-
ministic program can be made certifying with only a constantloss in time and space.So, when
searching for a certifying algorithm we only have to try hardenough; we are guaranteed to suc-
ceed. The construction also captures the intuition that certification is no harder than a formal
correctness proof of a program.

5.7. Non-Trivial Preconditions

For non-trivial preconditions the situation is more subtle. We will see that there are I/O-
behaviors that can be realized by a non-certifying algorithm but cannot be realized by a certifying
algorithm. However, every algorithm can be made weakly certifying.

A Program without a Certifying Counterpart:.On an inputx not satisfying the precondition, a
non-certifying program may do anything. In particular, it may diverge or return nonsense. The
requirements for a certifying algorithm are more stringent. On inputx, it is supposed to either
return ay and a witness which provesψ(x,y)∨¬ϕ(x) or output⊥ and a witness which proves
¬ϕ(x). We will next show that some I/O-behaviors resist certification.

Theorem 6. Consider the following task. The input consists of two strings s and x. The pre-
condition states that the string is the description of a Turing machine which halts on x. The
postcondition states that the output is the result of running s on x. This behavior can be realized
algorithmically, however it cannot be realized by a certifying algorithm.

Proof: The behavior is easy to implement, take any universal Turingmachine. It is even con-
ceivable to prove the correctness of the implementation. After all, universal Turing machines are
quite simple programs.

However, there is no certifying algorithm implementing this behavior. What would a cer-
tifying algorithm have to do on inputs andx? It either outputs⊥ and proves thats is not the
description of a Turing machine halting onx, or it provides an outputy, and then proves thats
is not the description of a Turing machine halting onx or that the output of the Turing machine
described bysonx is y. By standard diagonalization we can show that such an algorithm (which
would essentially have to solve the halting problem) cannotexist: SupposeH(s,x) is a program
that always halts, and, whenevers encodes a Turing machine halting on inputx with some out-
put, thenH outputs the same output. Consider the programP, that on inputs′ calls H(s′,s′)

30

and outputs something differing fromH(s′,s′). SinceH always halts,P always halts. Ifp is a
description ofP thenP(p) 6= H(p, p) = P(p), a contradiction. �

Note that there exists a weakly certifying algorithm that solves the problem. The reason is
that weakly certifying algorithms do not have to halt when the precondition is not fulfilled. In
fact every program can be made weakly certifying, as we show next.

Every Program can be Made Weakly Certifying:.We modify the argumentation of Subsec-
tion 5.6. Let (ϕ,ψ) be an I/O-specification and letP be a program (in a programming language
L with well-defined semantics) with I/O-behavior(ϕ,ψ). We assume that we have a proof (in
some formal systemS) thatP realizes(ϕ,ψ), i.e., a proof of the statement

ϕ(x) =⇒ P halts on inputx andP(x) ∈Y and
if P halts onx thenψ(x,P(x)).

(7)

We usew2 to denote the proof.
We extendP to a programQ which on inputx does the following: IfP halts on inputx, Q

outputsP(x) and a witnessw = (w1,w2,w3) wherew1 is the program textP, w2 is as above, and
w3 is the computation ofP on inputx. This construction is akin to proof-carrying code [NL96,
Nec97].

The witness predicateW (x,y,w) holds if w has the required format, i.e.,w = (w1,w2,w3),
wherew1 is the program text of some programP, w2 is a proof for (7), w3 is the computation
of P on inputx, andy is the output ofw3. The following statements show thatQ is an efficient
weakly certifying algorithm:

1. W is a witness predicate for I/O-behavior(ϕ,ψ):

• Checkability: The check whether a triple(x,y,w) satisfies the witness predicate is
again easy. We use a proof checker for the formal systemS to verify thatw2 is a
proof for statement (7). We use an interpreter for the programming languageL to
verify that w3 is the run ofP on inputx and thaty = P(x). Note that this checker
always halts.

• Witness property and Simplicity:AssumeW (x,y,w). Thenw = (w1,w2,w3), where
w1 is the program text of some programP, w2 is a proof for (7), w3 is the computa-
tion of P on inputx, andy is the output ofw3. Thusy = P(x) and either¬ϕ(x) or
ψ(x,P(x)). This proof is elementary.

2. For every inputx with ϕ(x), algorithmQ computes a witnessw with W (x,P(x),w). This
follows from the definition ofQ.

3. The argument from Subsection5.6applies.

We summarize the discussion.

31

Theorem 7. Every deterministic program for I/O-specification has an efficient weakly certifying
counterpart. This assumes that a proof for (7) in a formal system is available.

Theorem5 follows as a corollary by settingϕ = T. The remarks following Theorem5 apply
also to the construction of this paragraph.

5.8. An Objection

Several colleagues suggested to restrict the length of and the computation time required to
check the witness, e.g., to a polynomial in the length of the input. Following the suggestion
would have the undesirable consequence that only problems in NP∩coNPcould have certifying
algorithms.

Lemma 5. Let f : X → {0,1} and assume that f has a witness predicate W with polynomial
size witnesses and that W can be evaluated in polynomial time. Then f∈NP∩coNP.

Proof: We guess the outputy and the witnessw and computeW(x,y,w). In this way, we obtain
a polynomial-time nondeterministic algorithm for the yes-as well as the no-instances off . Thus
f ∈ NP∩coNP. �

There is no reason to restrict certification to problems inNP∩coNP. In fact, certification has
been used successfully to verify optimal solutions toNP-complete optimization problems; see
Subsection9.3. Even more so, the concept of certifying algorithms is applicable to the whole
spectrum of complexity classes.

6. Checkers

A checkerfor a witness predicateW is an algorithmC that on input(x,y,w) returnsW (x,y,w).
Figure1 in the introduction compares the I/O behavior of a non-certifying program with a certi-
fying program and demonstrates how a checker is used to ensure that the witnessw certifies that
y is the correct output for inputx. When designing checkers, there are several aspects that weare
interested in:

1. Correctness: Checkers must be correct.

2. Running time: Ideally, the running time of a checker is linear in the size of its input, i.e.,
the size of the triple(x,y,w).

3. Logical complexity: Checkers should be simple programs.

4. Required randomness (see Section10): Checkers may use randomness. Most users will
prefer deterministic checkers over randomized checkers.

Correctness is the crucial issue. The concept of certifyingalgorithm relies on our ability to write
correct checkers. What approaches do we have? We may take thepragmatic approach or use
formal verification for checkers. We discuss these options next.

32

Problem LoC(P) LoC(C) Reference
Max Cardinality Matching 280 26 [MN99, Section 7.7]
Planarity 900 130 [MN99, Section 8.7]

Table 1: The length (in lines of code (LoC)) of two modules andthe corresponding checkers in LEDA. The second
line refers to the module that computes maximum matchings ingraphs. The module has 280 LoC, the checker has
26 LoC. It verifies that an odd-set cover proves the optimality of a matching in a general graph, see Section2.5.
The third line refers to the planarity test module. It computes combinatorial planar embeddings of planar graphs
and exhibits Kuratowski subgraphs in non-planar graphs andhas 900 LoC. The corresponding checkers verify that
a combinatorial embedding satisfies Euler’s relation, see Section2.6, and that a list of edges in a graphG forms a
Kuratowski subgraph. The former checker hat 35 LoC, the latter checker has 95 LoC and is the longest checker in
LEDA.

6.1. The Pragmatic Approach

The pragmatic answer is that the task of checking a witness should be so simple that the
question of having a correct checking program is not really an issue. The checking program is
short and has a simple logical structure and hence every programmer should be able to get it
right. LEDA followed the pragmatic approach; Table1 shows the length (in lines of code) of
some checkers in LEDA.

What kind of primitives can one use in a checker? We have to assume that there is a basic
layer of correct primitives, e.g., simple data structures such as linear lists, graphs, union-find and
simple algorithms such as connectivity of graphs and minimum spanning trees.

We can also use non-trivial primitives as long as they are certifying. Assume that you want to
use a functionf in a checkerC and that you have a certifying algorithmQf and a correct checker
Cf for it. When you need to computef (x′) in C, you callQf and obtainy′ and a witnessw′.
Then you useCf to check the triple(x′,y′,w′). If Cf accepts the triple, you know thaty′ is equal
to f (x′) and you proceed. IfCf rejects the triple,C gives up and rejects.

The checker could also require that the triple(x′,y′,w′) is provided to as part of the witness.
This would simplify the checker and is useful, whenever the checker has to operate under limited
resources or when one wants to formally verify the checker.

6.2. Manipulation of the Input

The checker uses the input data. Since a program could tamperwith the input, precautions
must be taken, to ensure that the witness is checked against an unmanipulated input. This issue is
also addressed in Figure1 in the introduction, which shows that the checker accesses the original
input.

As an example of a common pitfall, observe that in order to check the output of a sorting
algorithm, it does not suffice to verify that the output list is sorted. Rather, one also needs to
check that the output list contains the same elements as the input list.

Two methods can be applied to resolve the issue with manipulation of the input. In the first
method the checker withholds a private copy of the input, to which the certifying algorithm has
no access to. When done so, the witness has to be written in a way that allows for it to be checked
using the copy of the input.

33

In the second method the checker prevents (or monitors) alterations of the input. Recall that
in the case of binary search (see Subsection5.2) the second method has to be applied to prevent
dramatic increase of the running time. In the case of sorting, alterations of the input may for
example be monitored by using only a trusted version of swap (see Section11).

6.3. Formal Verification of Checkers

Since checkers are so simple, we might be able to prove them correct. There is an obvious
objection. Only programs written in a programming languagewith a formally defined semantics
can be proven correct, but most algorithms are written in languages, e.g.,C, C++ or Java, whose
semantics are only informally defined.

However, there is no need to write the checker in the same language as the program comput-
ing the solution and the witness. We may write the checker in alanguage that supports verifica-
tion. Since checkers are simple programs, this should not bea big obstacle. Also since the time
complexity of the checking task is frequently much smaller than the complexity of computing
the solution, the efficiency of the language is not an obstacle.

We next turn to a discussion of the advantages of certifying algorithms.

7. Advantages of Certifying Algorithms

Assume that we have a (strongly, ordinary, weakly) certifying programP for an I/O-behavior
(ϕ,ψ) and a correct checkerC. What do we gain?

Instance Correctness:.If the checker accepts(x,y,w), w proves that either¬φ(x) or ψ(x,y). In
the case of a strongly certifying algorithm, we also know which alternative holds. We are certain
thatP worked correctly on the instancex. We emphasize that we do not know that the program
will work correctly for all inputs, we only know it for instancex. If the checker rejects(x,y,w),
w is not a valid certificate and we know thatP erred either in the computation ofy or in the
computation of the certificatew.

Testing on all Inputs:.Testing is the most popular method to ensure correctness of implementa-
tions. The implementation is run on inputs for which the correct result is already known and only
released if the correct output is produced for all test inputs. The standard objection to testing is,
of course, that it can only prove the presence of errors and not the absence of errors. There is also
a second objection:one can only test on inputs for which the answer is already known. What if
your algorithm is the first for a certain task and you know the answer only on a very small set
of inputs or if your algorithm is much more efficient than all previous algorithms and hence you
can run the other algorithms only for small inputs? Using certifying algorithms, we can now test
our program on every inputx and not just on inputs for which we already know the right answer
by other means. We can even test our program whenever it is executed.

Confinement of Error:.Whenever a certifying program fails on an input, the checkercatches the
error. In a system consisting of certifying components, errors are caught by the failing module
and do not spread over to other modules. This greatly simplifies the task of finding the source of
the error.

34

More Effective Program Development:.Program modules are usually incorrect or incomplete
during much of their development phase. Confinement of erroris particularly important during
this phase.

Trust with Minimal Intellectual Investment:.Which intellectual investment does a user have to
make in order to trust a certifying program? Not much. First,he has to understand, why a witness
proves the correctness of the program on a particular instance, and second he has to verify that
the checker is correct.

Remote Computation:.Certification allows a user to locally (e.g., on a mobile device) verify an
answer that has been computed at some distant location (e.g., on a fast remote server), even if
the software used for computation is untrusted, or the channel by which the result is transferred
is noisy. This allows the usage of untrusted fast remote servers.

Verified Checkers:.As we will see in the examples, checkers are frequently so simple, that their
formal verification is feasible. Also, they are frequently so efficient compared to the program
itself, that we may be willing to write them in a less efficientprogramming language which eases
verification.

Black-Box Programs:.In order to develop trust in a certifying program there is no need to have
access to the source text of the program. It suffices to have access to the source of the checker
since only its correctness needs to be verified. In other words, the intellectual property can be
kept secret and yet trust can be developed.

This argument is somewhat compromised by our theoretical constructions in Section5.
There, code (either in source or in binary form) and correctness proof are part of the witness
and cannot be kept secret. Zero-knowledge proofs might allow to overcome this problem.

Tamperproofness:.Certifying algorithms are resistant to tampering. If a triple (x,y,w) does not
pass the witness predicate, the checker rejects it. If it satisfied the witness predicate despite
the fact that the program was tampered with, the user receives a correct result and does neither
notices nor cares about the tampering.

Efficiency of Checking:.In all examples discussed in this paper, the checker runs in time linear
in the size of the triple(x,y,w) and, in the case of algorithms with super-linear running time the
length ofw is sublinear in the running time of the algorithm.

On the contrary, a program that only returns its answer and nothing else cannot be checked
in sub-computing time or space (at least if its answers belongs to some finite set). Otherwise, we
would simply present the input with all possible answers to the checker. Exactly one answer will
be accepted and so we return it as the answer to the input.

Certifying Algorithms, a Challenge for Algorithmics:.Most existing algorithms are non-certifying.
It is a challenge for algorithmics to find certifying algorithms which are as efficient as the ex-
isting non-certifying ones. The design of certificates frequently leads to deeper insight into the
problem structure.

35

Better Programming:.Turning a correct algorithm into a correct program is an error-prone task.
An algorithm is the description of a problem solving method intended for human consumption.
It is usually described in natural language, pseudo-code, mathematical notation or a mixture
thereof. A program is the description of a problem solving method intended for execution by a
machine. It is written in a programming language and usuallymuch more detailed than the al-
gorithm. Certifying algorithms are easier to implement correctly than non-certifying algorithms
because they can be tested on all inputs.

Practical Experience:.Mehlhorn and Näher adopted the concept of certifying algorithms a
design principle for the LEDA [MN99, LED] library of efficient data types and algorithms,
the name “certifying algorithm” was coined in [KMMS06]. They started to build LEDA in
1989 [MN89, NM90]. They implemented conventional algorithms and some checks for asser-
tions and post-conditions, and tested extensively. Nevertheless at least two major programs were
incorrect when first released: the planarity test, see Subsection 2.6 and Section3, and the con-
vex hull algorithm in arbitrary dimensional spaces, see Section 9.1. In the attempt to correct the
errors in these programs, Mehlhorn and Näher adopted the concept of certifying programs and
reported about it in [MNU97, MN98]. For the LEDA book [MN99], many algorithms were reim-
plemented and a large number of the algorithms in LEDA were made certifying, in particular,
the graph and geometry algorithms. However, there are stilllarge parts which are non-certifying,
e.g., all algorithms working on the number types of LEDA.

Hidden Assumptions:.A checker can only be written if the problem at hand is rigorously de-
fined. Mehlhorn and Näher noticed that some of their specifications in LEDA contained hidden
assumptions which were revealed during the design of the checker. For example, an early version
of the biconnected components algorithm assumed that the graph contains no isolated nodes.

8. General Techniques

There are several general techniques, that facilitate the design of certifying algorithms. We
start their discussion by considering reductions that preserve witnesses.

8.1. Reduction
Reduction is a powerful problem solving method. In order to solve a problem, we reduce it

to a problem for which we already know a solution. More precisely, we want to solve problem
P using an algorithmA′ for a problemP′ and two transformations. Transformationf translates
problem instances of problemP into problem instances of problemP′ which are then solved
by means of algorithmA′. The result ofA′ is translated back to an output ofP by means of a
transformation5 g. Thus f : X→ X′, g : X×Y′→ Y andA(x) = g(x,A′(f (x))) is an algorithm
for P.

In this section, we show how to use reductions in the context of certifying algorithms. We will
first discuss an example – a reduction of maximum cardinalitybipartite matching to maximum

5This transformation has inputsy′, the output ofA′, andx, the instance ofP to be solved. The inputx is needed
so thaty′ can be interpreted for it.

36

flow – and then give a general formulation. The main additional requirement is the availability
of a transformation that transforms witnesses forP′ into witnesses forP.

8.1.1. An Example
A matching in a graph is a set of edges no two of which share an endpoint. A maximum

cardinality matching or maximum matching is a matching of maximum cardinality. A node
coverC is a set of nodes covering all edges inG, i.e., for each edge ofG at least one endpoint is
in C. The following Lemma is a special case of the discussion in Section 2.5.

Lemma 6. Let G be a bipartite graph, M be any matching in G, and C be any node cover. Then
|M| ≤ |C|. If |M|= |C|, M is a maximum cardinality matching in G.

Proof: We define a mapping fromM to C. For any edge in the matching at least one endpoint
must be in the node cover. We can therefore map any edge in the matching to a node in the cover.
This mapping is injective, since edges in a matching do not share endpoints. Thus|M| ≤ |C|. �

A network is a directed graphG = (V,E) with a nonnegative capacity functioncapdefined
on the edges and two designated nodess andt. A flow is a function f defined on the edges that
observes the capacity constraints, i.e., 0≤ f (e) ≤ cap(e) for any edgee, and observes the flow
conservation constraints, i.e., for any nodev different froms andt, the flow out ofv is the same
as the flow intov, i.e.,excess(v) = ∑e;e=(v,w) f (e)−∑e;e=(u,v) f (e) = 0. The value of the flow is
the excess ofs, i.e., val(f) = excess(s). An (s, t)-cut (S,T) is a partition ofV into two setsS
andT such thats∈ S, t ∈ T, V = S∪T andS∩T = /0. The capacity of a cut(S,T) is the total
capacity of the edges going fromS to T, i.e,cap(S,T) = ∑e∈S×T cap(e).

Lemma 7. Let G be a network with source s and sink t, f an(s, t)-flow and(S,T) an (s, t)-
cut. Then val(f) ≤ cap(S,T). If val(f) = cap(S,T), then f is a flow of maximum value and
f (e) = cap(e) for all e∈ S×T and f(e) = 0 for all e∈ T×S.

Proof: We have

val(f) = excess(s)

= ∑
v∈S

excess(v)

= ∑
v∈S

(

∑
e;e=(v,w)

f (e)− ∑
e;e=(u,v)

f (e)

)

= ∑
e∈S×T

f (e)− ∑
e∈T×S

f (e)

≤ cap(S,T) .

�

37

s

UU WW

Figure 9: The figure on the left shows a bipartite graphG, a maximum matchingM (= the heavy edges) and a node
coverC (= the filled vertices). The figure on the right shows the corresponding flow network (all edges are directed
from left to right and have capacity one), a maximum flow (= theheavy edges), and an(s,t)-cut (S,T); Sconsists
of the filled vertices. The maximum flow and the(s,t)-cut induce a maximum matching and a node cover. The
matching consists of the saturated edges andC consists of the vertices inT ∩U plus the vertices inS∩W plus the
vertices inU ∩S that have an edge to a vertex inT ∩W.

The reduction from maximum bipartite matching to maximum flow is as follows: LetG =
(U ∪W,E) be a bipartite graph. We construct an auxiliary graphG′ with node setV = U ∪W∪
{s, t }, wheres andt are new nodes. We have edges froms to all nodes inU , direct the edges in
E from U toW, and edges from all nodes inW to t. All edges have capacity one.

Let f0 be an integral maximum flow. We construct a matchingM0 in G from it by putting
into M0 precisely the edges inE that carry a flow of one.

Lemma 8. M0 is a matching and|M0|= val(f0).

Proof: Since the edges froms to any node inU and from any node inW to t have capacity one
and our flow is integral, the flow out of a node inU is at most one and the flow into a node inW
is at most one. ThusM0 is a matching and|M0|= val(f0). �

We next show how to translate cuts into node covers. Figure10 illustrates this construction.
Let (S,T) be an(s, t)-cut. We define

C :=(T ∩U)∪ (S∩W)∪{u | there is an edgee= (u,w) ∈ (S∩U)× (T∩W)} .

Lemma 9. If (S,T) is an(s, t)-cut, then C is a node cover.

Proof: Let e= (u,w) be any edge of our bipartite graph. If eitheru∈ T or w∈ S, e is clearly
covered. So assumeu∈ Sandw∈ T. Thene is covered by the third term in the definition ofC.
ThusC is a node cover. �

38

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

S

T

U W

...

......

...

Figure 10: The figure demonstrates how to obtain a node cover from a cut(S,T). The cover contains the nodes
in T ∩U , S∩W and the source nodes of the edges in(S∩U)× (T ∩W). Every edge has an endpoint in a shaded
region, which shows that the set of vertices in the shaded region is a node cover.

Lemma 10. Let (S0,T0) be an(s, t)-cut with val(f0) = cap(S0,T0) and let M0 and C0 be the
corresponding matching and node cover. Then|M0|= |C0|.

Proof: We have

|M0|= val(f0)

= cap(S0,T0)

= |S0∩W|+ |T0∩U |+ |{e= (u,w) ∈ (S0∩U)× (T0∩W)}|
≤ |S0∩W|+ |T0∩U |+ |{u | there is an edgee= (u,w) ∈ (U ∩S0)× (W∩T0)}|
= |C0|,

where the second equality follows from the fact that there are |S0∩W| edges(w, t) in S0×T0

and |T0∩U | edges(s,u) in S0×T0 and the inequality follows from the fact that all edges in
S0× T0 are saturated and hence counting endpoints inU is equivalent to counting the edges
in (S0∩U)× (T0∩W). �

The example demonstrates how to design a certifying algorithm via a reduction to a differ-
ent problem, for which a certifying algorithm is already known. After we describe the general
approach to reductions, we explain why and how the previous example is a special case.

39

8.1.2. The General Approach
We now describe a general approach for obtaining certifyingalgorithms via reductions.

Theorem 8. Let (ϕ,ψ) and (ϕ ′,ψ ′) be I/O-specifications and letW and W ′ be correspond-
ing (strong) witness predicates. Let A′ be a (strongly, weakly) certifying algorithm for I/O-
specification(ϕ ′,ψ ′) and witness predicateW ′. The translations f: X→ X′, g : X×Y′ → Y,
h : X×Y′×W′→W transform inputs, outputs, and witnesses respectively. Assume further

W
′(f (x),y′,w′) =⇒ W (x,g(x,y′),h(x,y′,w′)). (8)

If A′ is weakly certifying, also assume

ϕ(x) =⇒ ϕ(f (x)).

Then the following algorithm A is a (strongly, weakly) certifying algorithm for I/O-specification
(ϕ,ψ) and witness predicateW .

1. translate x into f(x)

2. run A′ on f(x) to obtain y′ and w′

3. translate y′ into y= g(x,y′) and w′ into w= h(x,y′,w′) and return(y,w).

Proof: Assume first thatW andW ′ are (strong) witness predicates andA′ is a (strongly) cer-
tifying algorithm. Letx ∈ X be arbitrary and letx′ = f (x) be the corresponding input forA′.
Algorithm A′ terminates onx′ and returns a pair(y′,w′) with W ′(x,y′,w′). ThenW (x,y,w)
by implication (8). ThusA is a (strongly) certifying algorithm for I/O-specification(ϕ,ψ) and
witness predicateW .

We come to the case thatA′ is weakly certifying. Letx ∈ X satisfyϕ(x). Thenϕ ′(x′) and
henceA′ terminates and returns a pair(y′,w′). ThusA terminates andW (x,y,w). �

It may seem strange that the implicationϕ(x) =⇒ ϕ(f (x)) is only needed in the case of
weakly certifying algorithms. Note however, that even in this case, it is only used to conclude
thatA′ terminates onx′. Since (strongly) certifying algorithms are total, their termination is given
for free. So assume thatf translates an inputx with ϕ(x) into anx′ with ¬ϕ ′(x′) andA′ produces
a witnessw′ that proves thatx′ violates the precondition. In such a situation, it is unlikely that one
can prove the implicationW ′(f (x),y′,w′) =⇒ W (x,g(x,y′),h(x,y′,w′)). It is not impossible,
e.g., if the I/O-specification(ϕ,ψ) is trivial.

Let us illustrate Theorem8 on our previous example. We have

• X = the set of all bipartite graphsG.

• X′ = the set of all directed networksG′ with designated nodessandt.

• f translates a bipartite graphG = (U ∪W,E) into a directed network.

40

• Y = the set of matchings inG (alternativelyY = all subsets ofE).

• Y′ = the set of integral(s, t)-flows in G′.

• ψ ′(G′, f ′) = T iff f ′ is a maximum flow inG′.

• ψ(G,M) = T iff M is a maximum matching inG.

• W′ = the set of(s, t)-cuts.

• W = the set of node covers inG.

• W ′(G′, f ′,(S′,T′)) = T iff val(f ′) = cap(S′,T ′).

• W (G,M,C) = T iff |M|= |C|.

• g translates an integral flow into a matching.

• Lemma8 proves thatg does as required.

• h translates an(S,T)-cut into a cover.

• Lemma9 shows thath does as desired.

• Lemma10 proves implication (8).

This shows that the example of the reduction from maximum cardinality bipartite matching
to maximum flow is indeed a special case of the general scheme of reductions.

8.2. Linear Programming Duality

Linear programming duality is a general technique for certifying algorithms. Linear pro-
gramming is about optimizing linear objective functions inthe presence of linear constraints.
The dual of a linear program can provide a witness of optimality.

For n nonnegative real variablesx = (x1, . . . ,xn), the goal is to maximize the linear function
cTx= ∑1≤ j≤nc jx j subject tom linear constraints. Thei-th constraint has the form∑1≤ j≤nAi j x j ≤
bi . In matrix notation, a linear program is defined by anm×n real matrixA and real vectorsc
andb of dimensionn andm, respectively. The goal is to solve:

maxcTx subject to Ax≤ b andx≥ 0.

The dual linear program is a linear program inm nonnegative variablesy = (y1, . . . ,ym). There
is one variable for each constraint of the primal linear program. The objective function to be
minimized isyTb= ∑1≤i≤myibi. There is one constraint for each variable of the primal. Thej-th
constraint is∑1≤i≤myiAi j ≤ ci . Thus, in matrix notation the dual program can be formulatedas:

minyTb subject to yTA≥ cT andy≥ 0.

Lemma 11 (Linear Programming Duality). For linear programs, the following holds:

41

(a) Weak Duality: If x∗ and y∗ are solutions to a linear program and its dual, respectively, then
cTx∗ ≤ y∗Tb.

(b) Complementary Slackness: Assume x∗ and y∗ are solutions to a linear program and its dual,
respectively, with cTx∗ = y∗Tb. Let A(·,i) be the i-th column of A and let A(j ,·) be the j-th row

of A. Then ci = y∗TA(·,i) whenever x∗i > 0 and bj = A(j ,·)x
∗ whenever yj > 0.

(c) Strong Duality: If both programs are feasible, then there are solutions x∗ and y∗ with cTx∗ =
y∗Tb.

Proof: We only prove weak duality and complementary slackness. Forstrong duality, we refer
the reader to any textbook on linear programming, e.g., [Sch86]. Weak duality is easy to prove.
We have

cTx∗ ≤ y∗TAx∗ ≤ y∗Tb .

The first inequality follows fromcT ≤ y∗TA andx∗ ≥ 0 and the second inequality follows from
Ax∗ ≤ b andy∗ ≥ 0.

Assume now thatcTx∗ = y∗Tb. Then both inequalities in the equation above must be equali-
ties, i.e.,

cTx∗ = y∗TAx∗ = y∗Tb .

In particular for anyi with x∗i > 0, we must haveci = y∗TA(·,i) and for anyj with y∗j > 0, we must
haveb j = A(j ,·)x

∗, showing the complementary slackness. �

So a certifying algorithm for solving linear programs outputs a primal solutionx∗ and a dual
solutiony∗ with cTx∗ = y∗Tb. Observe, that it is trivial to check whetherx∗ is a solution for the
primal, thaty∗ is a feasible solution for the dual, and thatcTx∗ = y∗Tb. Also the proof that this
certifies optimality is trivial as we have seen above. It is only the existence ofx∗ andy∗ (i.e., the
strong duality) which is hard to prove, but this is not neededto be convinced.

The previous section, that deals with the reduction of bipartite matching to the computation
of a maximum flow, shows an example of linear programming duality. The dual problem to
the maximum flow problem is the minimum(s, t)-cut problem. As a second example we now
consider the minimum spanning tree problem.

Minimum Spanning Trees:.LetG=(V,E) be an undirected connected graph and letw : E→R≥0

be a nonnegative weight function on the edges. The goal is to find a spanning treeT ⊆ E of
minimum weightw(T) = ∑e∈T w(e).

What constitutes a proof of optimality? Figure11 illustrates such a proof; the drawing and
the usage of the word “moat” is inspired by [JP93]. For a partitionπ of the vertex set let #(π)
be the number of blocks ofπ and letδ (π) be the set of edges whose endpoints belong to distinct
blocks ofπ . Assume we have nonnegative valuesyπ , one for each partitionπ of the vertex set

42

A

B
C

D

Figure 11: The figure shows the minimum Euclidean spanning tree of pointsA, B, C, andD. The four points define
a complete graph on four vertices; the weight of an edge is theEuclidean distance between its endpoints. The edges
shown form a minimum spanning tree of this graph.
The figure also shows a proof of optimality of this spanning tree in the form of three moats of radiirred < rgreen<
rblue. Any spanning treeT ′ must have three edges crossing the red moat (= the union of thethree red circles) and
hence accrues a cost of 3·2·rredwithin the red moat. Similarly, it must have two edges crossing the green moat (= the
region within the green circles, but outside of the red circles) and hence accrues a cost of at least 2·2· (rgreen− rred)
within the green moat. Finally, it must have at least one edgecrossing the blue moat (= the region within the blue
circles but outside the green circles) and hence accrues a cost of at least 1·2 · (rblue− rgreen) in the blue moat. The
tree shown accrues exactly these costs.

such that

∑
π

yπ(#(π)−1) = ∑
e∈T

we (9)

∑
π;e∈δ (π)

yπ ≤ w(e) for all e∈ E (10)

yπ ≥ 0 for all π , /0⊂ S⊂V. (11)

Then the valuesyπ certify optimality ofT.

43

Lemma 12. If (9) to (11) hold, T is a minimum weight spanning tree.

Proof: Let T ′ be any spanning tree. For any partitionπ , the number of edges inδ (π)∩T ′ must
be at least #(π)−1 and hence

w(T ′) = ∑
e∈T ′

w(e) definition ofw(T ′)

≥ ∑
e∈T ′

∑
π;e∈δ (π)

yπ by inequality (10)

= ∑
π

∑
e∈T ′∩δ (π)

yπ change of order of summation

≥∑
π

yπ(#(π)−1) since|T ′∩δ (π)| ≥ #(π)−1 andyπ ≥ 0

= w(T) by equation (9)

ThusT is a minimum spanning tree. �

We next show how to compute the valuesyπ ; the construction will associate nonzero values
yπ only with n−1 partitions. LetT be an alleged minimum spanning tree and lete1, e2, . . . ,en−1

be the edges ofT in increasing order of weight; ties are broken arbitrarily.Let π1 be the partition
consisting ofn singleton blocks and, fori ≥ 2, letπi+1 be obtained fromπi by uniting the blocks
containing the endpoints ofei . Observe that the endpoints must be in distinct blocks sinceT is a
tree. We defineyπ = 0 for anyπ that is not in{π1, . . . ,πn−1}. For simplicity, writeyi instead of
yπi and define6

yi =

{

we1 if i = 1

wei −wei−1 if i > 1.

Lemma 13. (9) to (11) hold for the values yπ as defined above.

Proof: All values yπ are nonnegative. The blocks ofπi are exactly the connected compo-
nents of the graph(V,{e1, . . . ,ei−1}). Thusei has its endpoints in different blocks for all parti-
tionsπ1,π2, . . . ,πi and has both endpoints in the same block ofπ j for j > i and hence

w(ei) = ∑
2≤ j≤i

(w(ej)−w(ej−1))+w(e1) = ∑
j≤i

yi = ∑
π ; e∈δ (π)

yπ .

Consider next a non-tree edgee and leti be maximal such that the endpoints ofe are in distinct
blocks ofπi. Thenemust connect the same blocks ofπi asei does; otherwise the endpoints ofe
would be in distinct blocks ofπi+1. Thuse andei lie on a common cycle of(V,{e1, . . . ,ei ,e})
and hencew(e)≥ w(ei). Thus (10) holds.

6The radii of the moats shown in Figure11are half of theseyi ’s.

44

Finally, inspecting the proof of Lemma12 with T ′ = T, all inequalities must be equalities
and hence (9) holds. �

How does one arrive at this certificate? Linear Programming is the key ([CCPS98]). The
fractional minimum weight spanning subgraph problem is easily formulated as a linear program.
We have a nonnegative variablexe for each edge. The value ofxe designates the fraction with
which e belongs to the spanning subgraph. The goal is to minimize∑e∈E wexe. We have a
constraint for each partitionπ of V, namely that∑e∈δπ xe≥ #(π)−1, i.e., for each partition, we
must pick at least #(π)−1 edges connecting vertices in different blocks of the partition. We may
do so by picking edges fractionally. We obtain the followingformulation as a linear program.

minimize ∑
e

wexe

subject to ∑
e∈δ (π)

xe≥ #(π)−1 for all partitionsπ of V

xe≥ 0 for all e∈ E.

It is not obvious that this linear program always has an integral optimal solution. The dual linear
program has a variableyπ for every partitionπ and reads:

maximize ∑
π

(#(π)−1)yπ

subject to ∑
π ; e∈δ (π)

yπ ≤ we for every edgee

yπ ≥ 0 for all π .

A spanning tree is an integral solution to the primal and Lemma 13 shows that there is a dual
solution with the same objective value. Thus a minimum spanning tree is an optimal solution to
the primal and the dual solution proves its optimality. Lemma 12 is a proof of weak duality for
this special case.

Verifying Linear Programs:.Linear programming duality is a great method for checking opti-
mality of solutions to linear programs. Given a feasible solutionx∗ to the primal program linear
program

maximizecTx subject toAx≤ b andx≥ 0

and a feasible solutiony∗ to the corresponding dual linear program

minimizeyTb subject toyTA≥ cT andy≥ 0

the equality
cTx∗ = y∗Tb (12)

implies optimality of both solutions. Unfortunately, linear programming solvers [CPL, SoP] for
general linear programs are numerical procedures and yieldonly approximate solutions. So we

45

AB xB

xN

yB yN
bB

bN

cB cN

Figure 12: The decomposition into basic and non-basic variables. For simplicity, we assumed thatAB is the left
upper corner of the constraint matrix.

cannot hope that the computed approximate solutions satisfy equation (12). Fortunately, linear
programming solvers also return a combinatorial description of the optimal solution in terms of
a basis.

A basis is a square non-singular sub-matrixAB of the constraint matrixA. We call the primal
variables corresponding to columns ofAB basic and denote them byxB; the other primal variables
are called non-basic and denoted byxN. Similarly, we call the dual variables corresponding to
rows ofAB basic and denote them byyB; the other dual variables are called non-basic and denoted
byyN. Analogously, we splitb intobB andbN andc intocB andcN, see Figure12. A basis induces
a primal solution(x̂T

B, x̂T
N) (not necessarily feasible) and a dual solution(ŷT

B, ŷT
N) (not necessarily

feasible) by way of:

ABx̂B = bB or x̂B = A−1
B bB and x̂N = 0 (13)

ŷT
BAB = cT

B or ŷT
B = cT

BA−1
B and ŷN = 0 (14)

The objective value of these solutions is equal. Indeed,

(cT
B,cT

N)

(

x̂B

x̂N

)

= cT
Bx̂B = cT

BA−1
B bB = ŷBbB = (ŷT

B, ŷT
N)

(

bB

bN

)

.

A basis is primal feasible if ˆxB≥ 0 and is dual feasible if ˆyB≥ 0.

Lemma 14. If a basis is primal and dual feasible, the corresponding primal (x̂T
B, x̂T

N) and dual
solution(ŷT

B, ŷT
N) are optimal.

Proof: (x̂T
B, x̂T

N) is a solution to the primal linear program,(ŷT
B, ŷT

N) is a solution to the dual linear
program, and their objective values are equal. Thus, the solutions are optimal by Theorem11. �

Optimality of a basisB can now be checked as follows [DFK+03]. Equations (13) and (14)
are used to compute the primal and dual solutions corresponding to the basis; the computation
is carried out in exact rational arithmetic. If both solutions are feasible, the basis is optimal. In
this way, the speed of floating point arithmetic is used to findthe optimal basis and the exactness
of rational arithmetic is used to certify the solution. If the basis is not optimal but “close to
optimal”, it can be taken as the starting basis for an exact primal or dual Simplex algorithm.
The use of exact rational arithmetic can be replaced by the use of high-precision floating point
arithmetic [ACDE07].

46

8.3. Characterization Theorems

Within characterization theorems sometimes lies the potential to certify an output. We have
already seen examples of this: A graph is not planar if and only if it contains a Kuratowski
subgraph (see Section2.6), and a graph is not 3-connected if and only if it contains a separating
pair (see Section5.4).

Interestingly these characterizations follow a certain pattern: One direction of the proof of
the characterization is easy, and this side corresponds to required simplicity of the witness. The
more difficult direction is the one required to establish theexistence of a witness.

To clarify this statement we provide another example: A graph G is perfectif the chromatic
number of every induced subgraphH of G is equal to the size of the largest clique ofH.

An odd holein a graph is an induced odd cycle of length at least 5, anodd anti-holeis
an induced subgraph isomorphic to the complement of an odd hole. The strong perfect graph
theorem [CRST06] says that a graph is perfect if and only if it contains neither an odd hole nor
an odd anti-hole.

The chromatic number of odd holes and of odd anti-holes is notequal to the size of their
largest clique, so they cannot be contained in a perfect graph. This easy part of the characteriza-
tion shows that odd holes and odd anti-holes certify a graph to be not perfect. The second part of
the strong perfect graph theorem, the existence of an odd hole or an odd anti-hole in a non-perfect
graph, resolves a conjecture that had been open for more than40 years. The polynomial-time
algorithm for the recognition of perfect graphs [CCL+05] detects an odd hole or an odd anti-hole
in a perfect graph, and thereby certifies a graph to be not perfect.

8.4. Approximation Algorithms and Problem Relaxation

Approximation algorithms compute nearly-optimal solutions of optimization problems. They
come with a guarantee for the quality of approximation. We may assume w.l.o.g. that we deal
with a minimization problem. In the proof of correctness thequality of the solution is usually
measured against an easy to compute lower bound for the problem. A certifying approximation
algorithm should output (in a certifying way) a lower bound in addition to the solution. This can
either be the lower bound used in the proof of correctness or another lower bound. The general
technique for obtaining lower bounds is problem relaxation, i.e., enlarging the set of feasible
solutions. We give an example.

The traveling salesman problem asks for a shortest cycle visiting all vertices of a edge-
weighted undirected graphG = (V,E,c). The costc(C) of a cycleC is the sum of the costs
of the edges contained inC. We assume thatc satisfies the triangle inequality, i.e,c(uv) ≤
c(uw)+c(wv) for any triple of verticesu, v andw. There are approximation algorithms which
produce a solution whose cost is at most 1.5 times the optimum[LLRKS85]. We discuss two
lower bounds for the traveling salesman problem: 1-trees and the subtour elimination linear
program. Both approaches yield the same value, but use very different principles [CCPS98].

Lower Bounds via 1-Trees.A 1-tree anchored at a vertex v[HK70] is a spanning tree ofG\ v
plus two edges incident tov. A 1-treeis a 1-tree anchored at some vertexv of G. As for cycles,
the cost of a 1-tree is the sum of the costs of the edges in the 1-tree. A minimum 1-tree is a
1-tree of minimum cost. Minimum 1-trees are readily computed by n minimum spanning tree

47

computations since the minimum 1-tree anchored at a vertexv is simply a minimum spanning
tree ofG\v plus the two cheapest edges incident tov.

Minimum 1-trees can be used to lower bound the cost of any traveling salesman tour. For
this letπ be any real-valued function defined on the vertices ofG and consider the modified cost
functioncπ(uv) = c(uv)+π(u)+π(v). We callπ a potential function. The cost of a one-treeT
under the cost functioncπ is defined ascπ(T) = ∑uv∈T cπ(uv). Accordingly, a minimum 1-tree
with respect to the modified costπ is a 1-tree with minimal modified cost.

Lemma 15. Let C be a traveling salesman tour, letπ be a potential function, and let T be a
minimum 1-tree with respect toπ . Then

cπ(T)−2 ∑
v∈V

π(v)≤ c(C).

Proof: Sincec satisfies the triangle inequality, there is a tourD visiting every vertex exactly
once and having cost no more thanC. This tourD is a 1-tree (with respect to any anchor) and
hence

cπ(T)≤ cπ(D).

SinceD uses exactly two edges incident to any vertex,

c(D) = cπ(D)−2 ∑
v∈V

π(v).

Combining the equalities and inequalities, we obtain

c(C)≥ c(D) = cπ(D)−2 ∑
v∈V

π(v)≥ cπ(T)−2 ∑
v∈V

π(v).

�

A certifying approximation algorithm for the traveling salesman problem outputs a tourC, a
potential functionπ and a minimum 1-treeT for cπ , and a proof of optimality ofT. The proof
of optimality reduces to the minimum spanning tree problem,for which we have discussed a
certifying algorithm in Subsection8.2.

A good potential functionπ can be found by an iterative process ([HK70, HK71]). Observe
that

cπ(T)−2 ∑
v∈V

π(v) = c(T)+ ∑
v∈V

degT(v)π(v)−2 ∑
v∈V

π(v) = c(T)+ ∑
v∈V

(degT(v)−2)π(v),

where degT(v) is the number of edges ofT incident tov. We conclude that the vector(degT(v)−
2)v∈V is the gradient of the expressioncπ(T)−2∑v∈V π(v) viewed as function ofπ .

We start an iterative process withπ(v) = 0 for all v. In an iteration, we first compute the
minimum 1-treeT with respect to the current modified cost functioncπ . If T is a tour, i.e.,
degT(v) = 2 for all v, we stop;T is an optimal tour. Otherwise, we updateπ to π ′ as follows:

π ′(v) = π(v)+ ε(degT(v)−2) for all v∈V,

48

whereε > 0 is a small value; this is a small step in the direction of the gradient and increases the
potential value of vertices of degree three or higher and decreases the potential value of vertices
of degree one.7 We setπ = π ′ and repeat. The iterative process produces a sequence of lower
bounds. We remember the best lower bound computed in this wayand use it to produce a lower
bound for our problem, as described above.

Lower Bounds via Linear Programming.An integer linear programming formulation of the trav-
eling salesman problem is as follows. We have a decision variablexe for each edge of the graph
with the intention that the edges withxe = 1 comprise an optimal solution. A tour contains two
edges incident to every vertex and for every non-empty proper subsetS of V there must be at
least two edges in any tour with exactly one endpoint inS. We obtain the following formulation
as an integer linear program.

minimize ∑
e

cexe

subject to ∑
e∈δ (v)

xe = 2 for all v∈V

∑
e∈δ (S)

xe≥ 2 for all Swith /0 6= S 6= V

xe∈ {0,1} for all e∈ E

Here we useδ (S) to the denote the set of edges with exactly one endpoint inS. The equality
constraint for vertexv is called adegree constraintand the inequality for subsetS is called a
subtour elimination constraint. Consider any solution of this system and letT be the edges
picked; e∈ T iff xe = 1. ThenT contains two edges incident to every vertex and hence is a
collection of cycles. Assume for the sake of a contradiction, that the collection consists of more
than one cycle and letSbe the vertex set of one of the cycles. ThenT contains no edge inδ (S)
and hence violates the subtour elimination constraint forS.

The subtour LP is obtained from the ILP by replacing the constraintxe∈ {0,1} by the weaker
linear constraint 0≤ xe≤1. Thus the subtour LP is a relaxation of the traveling salesman problem
and provides a lower bound. Figure13gives an example. In this example, the cost of an optimum
tour is 10 and the objective value of the subtour LP is 9. The gap may be as large as a factor of
two [CCPS98].

The subtour LP has an exponential number of constraints, onefor each non-empty proper sub-
set of the vertices. It can be solved in polynomial time by means of the ellipsoid method [Sch03].

7For an edgeuv, we havecπ ′(uv) = cπ(uv)+ ε(degT(u)+degT(v)−4). Also,

cπ ′(T)−2 ∑
v∈V

π ′(v) = cπ(T)−2 ∑
v∈V

π(v)+ ε ∑
v∈V

(degT(v)−2)2.

Thus the cost of the 1-treeT increases by the change of the potential function. However,at π ′ a different 1-tree
may be minimal and hence it is not guaranteed that the iteration produces better and better lower bounds. In fact, in
general, it does not do so.

49

2

1

22

1

2

2

1

2

1/2

1

1/21/2

1

1/2

1/2

1

1/2

Figure 13: The figure on the left shows the edge costs; there are six edges of cost two and three edges of cost one.
The figure on the right shows an optimal solution to the subtour LP. The decision variables corresponding to the
edges of cost two have value 1/2 and the decision variables corresponding to the edges of cost one have value 1. The
solution has cost 9. The optimal tour has cost 10.

In practice, one uses the simplex method and a judiciously chosen subset of the subtour elimina-
tion constraints. The subset is determined dynamically by atechnique calledseparation. Let (x∗e)
be a solution to an LP comprising the degree constraints, thebounding constraints 0≤ xe≤ 1,
and some of the subtour elimination constraints. Consider an auxiliary graph with vertex setV,
edge setE, and set the capacity of the edgee to x∗e. Then(x∗e) violates a subtour elimination
constraint if and only if this auxiliary graph has a cut of capacity less than two. Such a cut can
be found by a minimum cut computation [SW97]. If a violated subtour elimination is found, it
is added to the LP, and the LP is resolved.

In Section8.2we learned how to verify solutions to linear programs. Now wewant to certify
a lower bound and this can be done by a simple rounding procedure [ABC+09]. Consider the
dual for the subtour LP. It has an unconstrained variableπv for each vertexv, a non-negative
variableyS for each non-empty proper subsetS of V, and a non-negative variableze for each
edgee. The variableze corresponds to the upper bound constraintxe≤ 1. The goal is to

maximize 2∑
v

πv +2∑
S

yS−∑
e

ze

subject to πu+πv + ∑
S;e∈δ (S)

yS−ze≤ ce for e= (u,v) ∈ E

yS≥ 0 for all Swith /0 6= S 6= V

ze≥ 0 for all e

50

If the primal or dual LP is solved by an LP-solver, the basis returned is not necessarily optimal.
Also, primal feasibility and dual feasibility are not guaranteed. However, the solutions are usu-
ally close to optimal. In the case of the subtour LP, this can be exploited as follows. Consider any
(not necessarily feasible) dual solution(πv), (yS), and(ze). We first replace any negativeyS by
zero and we then choose theze large enough so that all dual constraints are satisfied. In this way,
we obtain a feasible dual solution and hence a lower bound forthe traveling salesman problem.

8.5. Composition of Programs

Suppose that we have certifying algorithms for I/O-behaviors (ϕ1,ψ1) and (ϕ2,ψ2). How
can we obtain a certifying algorithm for the composed behavior? That’s easy.

Let Q1 andQ2 be certifying algorithms for the two I/O-behaviors, respectively, and letC1 and
C2 be the corresponding checkers. A certifying algorithm for the composed I/O-behavior works
as follows: Assume that our input isx.

RunQ1 onx. This producesy and a witnessw1.
if (y =⊥) then

Output⊥ and the witness(w1,⊥,⊥)
else

RunQ2 ony. This produceszand a witnessw2.
Outputz and the witnessw = (w1,y,w2).

end if
The checkerC for the composed behavior accepts(w′,y,w′′) as a witness if

y =⊥ and C1 accepts(x,y,w′) or (15)

C1 accepts(x,y,w′) and C2 accepts(y,z,w′′). (16)

Two I/O-behaviors should only be composed if the postcondition of the first behavior implies
the precondition of the second behavior, i.e.,ψ1(x,y) =⇒ ϕ2(y). If Q2 is strongly certifying, it
can discover a misuse of composition: Assume that they output byQ1 does not satisfyϕ2. Then
Q2 will either produce az with ψ2(y,z) and a proof that it did so or a proof for¬ϕ2(y). In the
former case,Q2 could handley although it did not have to do so, in the latter caseQ2 states that
its precondition is violated.

9. Further Examples

In the introductory Section1 we have discussed the examples of bipartition, connected com-
ponents, shortest paths, greatest common divisors, maximum cardinality matchings and pla-
narity. In Subsection5.2 we discussed a strongly certifying algorithm that five-colors a planar
graph and in Subsection5.4 we described a simple way to certify triconnectedness. We now
discuss further illustrative examples, demonstrating thebroad applicability of certification.

9.1. Convexity of Higher-dimensional Polyhedra and ConvexHulls

The convex hull of a finite setSof points ind-dimensional space is the smallest convex set
containingS. Its boundary is a piecewise linear hyper-surface. There are many algorithms for

51

higher-dimensional convex hulls [CK70, PS85, Sei86, CS89, CMS93] and implementations of
some [BDH96, MMN+98, CGA]. In 2 and 3 dimensions the output of a geometric algorithm can
be visualized and this helps debugging geometric programs.In higher dimensions, visualization
is not possible. How can one certify the output of a convex hull algorithm?

What is the output? All algorithms output the boundary of theconvex hull as a simplicial
piecewise linear hypersurfaceF . We will define this term below. In 3-dimensional space the
boundary is given as a set of triangles (in 3-space) that are glued together at their edges.

Task 1. Given a set S of points and a hyper-surfaceF verify thatF is the boundary of the
convex hull of S.

We split this task into two subtasks.

Subtask 1. Given a piecewise linear simplicial hyper-surfaceF in d-dimensional space verify
thatF is the surface of a convex polytope.

Assume thatF is the surface of a convex polytope and letP be the convex polytope whose
boundary isF .

Subtask 2. Verify that

• every vertex of P is a point in S and that

• every point of S is contained in P.

We discuss the two subtasks in turn. This section is based on [MNS+99, Section 2.3]. An
alternative solution can be found in [DLPT98]. We first deal with the Subtask1, whether a simpli-
cial piecewise linear hyper-surfaceF without boundary ind-dimensional space is the boundary
of a convex polytope. We assume that the hyper-surface is given by its facet graph. The facet
graph is ad-regular graph whose nodes are labeled byd-tuples of affinely independent points,
i.e., each node corresponds to an oriented(d−1) simplex (= a facet of the surface). The hyper-
plane supporting a facet dividesd-space into a positive and a negative halfspace. Neighboring
nodes differ in their labeling by exactly one point and for everyone of thed vertices of a facet
there must be such a neighboring facet. In other words, edgescorrespond to(d−2)-simplices
shared by two facets. Neighboring nodes must be labeled consistently, i.e., the negative halfspace
corresponding to adjacent facets must agree locally.

Let us interpret this definition in 3-space. Every node of thefacet graph corresponds to an
oriented triangle in 3-space. Oriented means that the two sides of the triangle are distinguished,
one is “outside” and one is “inside” (in the paragraph above,inside and outside are called negative
and positive, respectively). Adjacent triangles share twovertices and differ in one. Every triangle
has three neighbors and the two sides of adjacent triangles are locally consistent.

For smooth surfaces, already Hadamard described a test for convexity.

Theorem 9 (Hadamard). Let F be a smooth compact surface inR
d without boundary and let

d > 2. If F is locally convex at everyone of its points thenF is the surface of a convex body.

52

o o

Figure 14: Local convexity at ridges does not suffice: The figure shows a locally convex yet self-intersecting polygon
in thex,y-plane. A smooth version of this curve demonstrates that theconditiond > 2 is necessary in Theorem9.
Extending the polygon to a bipyramid by adding two points, one each on the negative and positivez-axis, and
constructing two triangles for each polygon edge yields a simplicial surface that is locally convex at every ridge
but has self-intersections; in the figure only the upper halfof the bipyramid is shown. The pointo shown is on the
negative side of all facets of the surface.

This theorem suggests that it suffices to check local convexity at every ridge of a simplicial
surface. Although this is clearly a necessary condition forglobal convexity it is not sufficient
as Figure14 shows, i.e., the non-smoothness of simplicial surfaces complicates matters. The
following theorem is the proper formulation for the polyhedral case:

Theorem 10 ([MNS+99]). LetF be a simplicial(d−1)-dimensional surface without boundary
in R

d that is consistently oriented, let o be center of gravity of all the vertices of surfaceF and
let p be the center of gravity of some facet ofF . ThenF is the surface of a convex body iff

• F is locally convex at all its ridges,

• o is on the negative side of all its facets, and

• the ray emanating from o and passing through p intersects only the facet containing p.

We refer the reader to [MNS+99] for a proof of this result. Figure14 illustrates it: Leto be
any point in thex,y-plane that is on the negative side of every facet of the surface shown. All but
two rays emanating fromo intersect the surface twice and hence witness the non-convexity of
the surface. The two exceptional rays go through the two tipsof the bipyramid, i.e., pass through
a lower dimensional feature of the surface. The key insight underlying the criterion is that this
observation is generally true.

The conditions listed in Theorem10are clearly necessary. Also, if every ray emanating from
o intersectsF only once,F is the surface of a convex body. It is somewhat surprising, that

53

it suffices to compute the number of intersections for a single ray. The verification is easy to
program.

• Check local convexity at every ridge. If local convexity does not hold at some ridge declare
F non-convex.

• Seto to the center of gravity of the vertices ofF and check whethero is on the negative
side of all facets. If not, declareF non-convex.

• Choose any facet and letp be the center of gravity of its vertices. Letr be the ray emanating
from o and passing throughp. If r intersects the closure of any other facet ofF declare
F non-convex.

• If F passes all three tests declare it the surface of a convex polytope.

We next turn to the Subtask2. Assume thatF passed the convexity test and letP be the
convex polyhedron with boundaryF . We need to verify that

• every vertex ofP is a point inSand that

• every point ofS is contained inP.

The first item is fairly easy to check. If the vertices ofP are equipped with pointers to
elements inS, the check is trivial. If the vertices ofP are specified by their coordinate tuples, the
check involves a dictionary lookup.

The second condition is much harder to check. In fact, without additional information (= the
witness), there seems to be no efficient way to verify it. A simple method would be to check
every point ofSagainst every facet ofF . However, the complexity of this method is an order of
magnitude larger that the complexity of the most efficient convex hull programs8. An alternative
method is to use linear programming to check that all non-vertices are non-extreme9. For fixed
dimension the alternative method is quadratic in the numberof vertices. For variable dimension
one might hope that a simplex-based verification procedure has good expected running time.
Nevertheless, both approaches essentially resolve the original problem. We conclude that convex
hull programs that output the hull as a convex polytope are hard to check. The “gift-wrapping”
algorithm [CK70] falls in this category.

What is an appropriate witness that makes checking easy? Here is one. Arrange the points in
S in a linear order and for each pointp in S that is not a vertex ofP indicate a set ofd+1 points
that come later in the ordering and that containp in their convex hull. We call such an ordering
anadmissible orderingof S.

8Algorithms based on randomized incremental construction [CS89, CMS93, BMh94] run in time related to the
size of the output and the size of intermediate hulls and the algorithm of [Sei86] is guaranteed to construct the hull
in logarithmic time per face.

9The linear program hasd variables corresponding to the coefficients of a linear function. For each vertex ofF
there is a constraint stating that the function value at the vertex is negative. For each non-vertex consider the linear
program that maximizes the function value at this point.

54

Lemma 16. An admissible ordering of S proves that every point of S is contained in P.

Proof: Let q1 to qn be an admissible ordering ofS. We show that eachqi is a convex combina-
tion of vertices ofP. We use induction oni starting atn and going down to 1. Consider anyi. If
qi is a vertex ofP, there is nothing to show. Otherwise,qi is a convex combination of points that
come later in the ordering. By induction hypothesis, these points are convex combinations of the
vertices ofP. Thusqi is a convex combination of the vertices ofP. �

The witness is easily checked. For each point that is claimedto be a convex combination of
points later in the ordering, one needs to solve a linear system.

The algorithms based on randomized incremental construction [CS89, CMS93, BDH96,
MMN+98, CGA] can be modified to compute this witness. They compute a simplicial com-
plex10 comprising the hull, i.e., a set of simplices whose union isP. They do so incrementally.
They start withd + 1 points ofS spanning a simplex and then add point after point. If a new
point p is contained in the current hull, they determine a simplex inthe current simplicial com-
plex containingp. The vertices of this simplex are the witnesses forp. If the new pointp is
outside the current hull, they determine all facets of the current hull visible from the new point.
For each such facetF they add a simplexS(F, p) with baseF and tipp to the simplicial complex.

Assume now that the algorithm is rerun: first the vertices ofP are inserted (in random order)
and then the non-vertices (in any order). In this way, all simplices in the simplicial complex have
their vertices among the vertices inP and each non-vertex inS is placed in a simplex spanned by
vertices ofP.

9.2. Solving Linear Systems of Equations

We consider a systemAx = b of m linear equations inn unknownsx; hereA is a m by n
matrix of real numbers andb is anm-vector. We want to know whether there is a solution to
this system. Again, a conventional algorithm would just return a single bit, telling whether the
system is solvable or not.

A certifying algorithm would do a lot more. If it declares thesystem solvable, it would return
a solution, i.e., ann-vectorx0 such thatAx0 = b. Observe that it is very easy to verify whether a
givenx0 is a solution. We simply plugx0 into the equation.

If it declares the system non-solvable, it could return anm-vectorc such thatcTA = 0 and
cTb 6= 0. Observe that such a vector witnesses non-solvability. Indeed, assume the existence of a
solutionx0. ThencTAx0 = (cTA)x0 = 0Tx0 = 0 andcTAx0 = cT(Ax0) = cTb 6= 0, a contradiction.
Thus there is no solution.

Why does such ac exist? IfAx= b has no solution,b does not belong to the space spanned by
the columns ofA. Thus we can writeb asb= b′+b′′, whereb′ is in the span of the columns ofA
andb′′ is orthogonal to all columns ofA. We can takec= b′′. ThencTA= 0 andcTb= b′′Tb′′ 6= 0.

How can we compute such ac? We use Gaussian elimination. It is well known that it returns
a solution when given a solvable system. It is less well knownthat it also returns a witness

10A simplicial complex is a set of simplices the intersection of any two is a face of both.

55

for non-solvability when given an unsolvable system. We describe Gaussian elimination as a
recursive procedure. If all entries ofA andb are zero, the zero-vector 0n is a solution. If all
entries ofA are zero andb is nonzero, saybi 6= 0, them-vectorei having a one in positioni and
zero everywhere else witnesses non-solvability.

So assume thatA has a nonzero entry, sayAi j 6= 0. We subtract a suitable multiple of thei-th
equation from all other equations (i.e., we subtractAl j /Ai j times thei-th equation from thel -th
equation for 1≤ l ≤m and l 6= i) so as to eliminate thej-th variable from the other equations.
The transformation yields a system withm−1 equations inn−1 unknowns, sayA′x′ = b′. Here
A′lk = Alk−(Al j /Ai j)Aik andb′l = bl−(Al j /Ai j)bi for l 6= i and allk. Also, row indexi and column
index j are deleted from the index set of the reduced system. Assume first that the reduced system
is solvable andx′0 is a solution. We plugx′0 into thei-th original equation, solve forx j and obtain
a solution to the original system. Assume next that the reduced system is unsolvable and that
c′ witnesses it, i.e.,c′TA = 0 andc′Tb′ 6= 0. We define them-vectorc by cl = c′l for l 6= i and
ci =−∑l 6=i(Al j /Ai j)c′l . Then for anyk, 1≤ k≤ n,

∑
l

cl Alk = ciAik +∑
l 6=i

cl Alk

= ciAik +∑
l 6=i

c′l (A
′
lk +(Al j /Ai j)Aik)

= (ci +∑
l 6=i

c′l (Al j /Ai j))Aik +∑
l 6=i

c′l A
′
lk

= ∑
l 6=i

c′l A
′
lk

= 0 .

An analogous computation shows thatcTb = c′Tb′ and hencecTb 6= 0. We have now shown that
Gaussian elimination easily turns into a certifying solverfor linear systems of equations.

9.3. NP-Complete Problems

Branch-and-Bound and Brunch-and-Cut are powerful methodsfor computing optimal so-
lutions to NP-complete problems [ABCC06]. The algorithms use a heuristic for computing a
feasible solution and compute a matching lower bound (we again assume a minimization prob-
lem) for the objective value of any feasible solution to prove optimality. For the latter, they
partition the search space and compute a lower bound for eachcell of the partition. The heuristic
solution is optimal if its objective value matches the lowerbound.

In the case of the Traveling Salesman Problem (see Subsection 8.4) the partition is usually by
inclusion and exclusion of edges. For example, we might divide the search space into two parts,
by considering all tours containing a particular edgeuv and all tours not containing this edge.
Figure15shows an example. The two cells obtained in this way can be subdivided further using
the same strategy recursively. In each cell a lower bound is computed, e.g., using the methods of
subsection8.4. In summary, the approach is as follows.

• Use a heuristic to find the optimum solution. Verify that the solution is feasible.

56

0 1

2

3

4

5

2, x0,1 = 1
2

1

2

1

22

2

1

0 1

2

3

4

5

2 2

1

22

2

1 1

0 1

2

3

4

5

1
1/2

1/2

1/2

1

1/21/2

1

1/2

Figure 15: In the example of Figure13, the optimal solution to the subtour LP is fractional;x0,1 has value 1/2. We
generate two subproblems. In the first subproblem, we setx0,1 to 1 and force the edge into the tour. In the second
subproblem, we setx0,1 to 0; this is tantamount to deleting the edge. For both subproblems, the subtour LP (in fact,
the LP with only the degree constraints) has objective value10. For the first subproblem there is a non-integral
solution of value 10 as shown on the right, there is also an integral solution of value 10.

• Partition the space of feasible solutions. Verify that the partition is indeed a partition.

• Compute for each cell of the partition a lower bound on the objective value of the feasible
solutions in this cell. Verify that the lower bound computedfor each cell is indeed a lower
bound and has at least a value equal to the cost of the heuristic solution computed in the
first step.

The first two steps are typically simple. For the last step, one uses the techniques discussed in
Section8.4. In [ABC+09], Applegate et. al. report about the the certification of an optimal TSP
tour through 85,900 cities. The tour was obtained by a heuristic [Hel06] and then verified by the
approach outlined above.

As a second example consider the satisfiability problem of propositional logic. Letϕ be a
boolean formula. A satisfying assignment is a witness of satisfiability. A resolution proof is a
witness of non-satisfiability. The resolution proof may have exponential length; it is however,
easy to check.

9.4. Maximum Weight Independent Sets in Interval Graphs

Given a collection of weighted intervals, the goal is to find an independent set of maximum
weight. We usei to denote a generic interval andI to denote an independent set. The goal is then
to find an independent setI of intervals of maximal weight∑i∈I wi , wherewi > 0 is the weight
of interval i. This problem is one of the introductory examples in the textbook of Kleinberg and
Tardos [KT05].

The standard algorithm for this problem uses dynamic programming. Assume that the inter-
vals are numbered in the order of their left endpoint. The optimal solution either contains interval
1 or it does not. Thus

Opt(1,n) = max(Opt(2,n),w1+Opt(j,n))

57

0

X X X X X
1 1

1

1

2

2

2

3

3

4

5

Figure 16: An instance of the maximum weight independent setproblem: The interval are indicated as horizontal
lines. The weight of each interval is indicated near the interval. The two intervals drawn as heavy lines form a
maximum weight independent set. There are five maximal cliques indicated by X, theiryC-values are indicated
below the X’s.

where j is minimal such that thej-th interval is independent of the first, i.e., its left endpoint is
to the right of the right endpoint of interval 1. The algorithm has linear running time by use of
memoization.

We will next derive a linear time certifying algorithm. A clique is a set of intervals that
intersect pairwise. A maximal clique is one that is not contained in any other clique. Consider
the sorted list of all interval endpoints. Cliques correspond to the elementary intervals. A clique
is maximal if the left endpoint of the corresponding elementary interval is the left endpoint of an
interval and the right endpoint of the corresponding elementary interval is the right endpoint of
an interval.

We compute an independent setI ∗ and nonnegative valuesyC and wiC for each maximal
cliqueC and intervali ∈C such that (see Figure16)

wi = ∑
C;i∈C

wiC and wiC ≤ yC and max
i∈I∗∩C

wiC = yC.

Consider now any independent setI of intervals. Then

∑
i∈I

wi = ∑
i∈I

∑
C:i∈C

wiC = ∑
C

∑
i∈I∩C

wiC = ∑
C

max
i∈I∩C

wiC ≤∑
C

yC,

where the third equality follows from the fact that each clique can contain at most one element
of I . For I = I ∗, the inequality is an equality. Thusw(I) ≤ w(I ∗) andI ∗ is a maximum weight
independent set.

For an intervali, let Li be the leftmost maximal clique containingi. A simple greedy algo-
rithm determines theyC andwiC values. We process the maximal cliques in order (say from right
to left) and assign to each clique a valueyC. We also maintain reduced weightsw′i for all intervals
i. Initially, w′i = wi for all i. LetC be the current maximal clique (initially the rightmost maximal
clique). We set

yC = max
{

w′i | Li = C
}

,

58

i.e., we setyC to the maximal reduced weight of any interval havingC as its leftmost maximal
clique. Maximality ofC guarantees that there is at least one such interval. Also, for any i
contained inC, we setwiC to the minimum ofyC andw′i and reducew′i by wiC.

An interval i is calleddefiningfor C if C = Li andyC = wiC andyC > 0. A cliqueC with
yC = 0 has no defining interval. An interval is called tight forC if wiC = yC. The following
Lemma is key (and also obvious).

Lemma 17. If i is defining for Li then i is tight for all cliques containing it.

Proof: If i is defining forLi , wiL i = yLi > 0. This implieswiC = yC for all maximal cliques
containingi. �

We next construct the independent setI ∗. LetC be the leftmost clique. If its valueyC is zero,
we move on to the next clique. Otherwise, leti be defining forC. We addi to I ∗ and remove all
cliques containingi and all intervals intersecting with it from the problem. Observe that, by the
preceding Lemma,wiD = yD for all cliquesD removed and that the intervals removed have their
leftmost maximal clique among the removed cliques. In otherwords, the remaining cliques keep
their defining intervals. We continue with the leftmost remaining clique. In this way, we have
for everyC with positiveyC an intervali in I ∗ with wiC = yC.

9.5. String Matching

Given a text stringT0T1 . . .Tn−1 and a patternP0 . . .Pm−1, the string matching problem is to
decide whether the pattern occurs in the text string, i.e., whether there is a positioni such that
Ti+ j = Pj for 0≤ j < m. In such a situation, we say that the pattern occurs with shift i.

For the purpose of certification, if the pattern is found the position is output. A certificate for
the contrary case may be given in the form of an arrayw that indicates for each shift a specific
character mismatch. The arrayw that satisfiesw[i] = min{ j | Ti+ j 6= Pj} provides exactly that:
placing the pattern into the text with a shift ofi creates a mismatch at positioni +w[i]. To verify
the validity of the certificate it suffices to checkw[i] ∈ {0, . . .m−1} andTi+w[i] 6= Pw[i] for all
i ∈ {0, . . . ,n−m}.

We now show how the Knuth-Morris-Pratt algorithm can be modified to provide such a cer-
tificate with its answer. Surprisingly, we could not find thismodification in the literature. As is
customary, we extend the pattern by a character $ that does not match any other character, i.e.
Pm = $ andTi 6= $ 6= Pj for 0≤ i < n and 0≤ j < m. Assume for the time being that we have at
our disposal a functionw′, where

w′(i) = min
{

j | Pi+ j 6= Pj
}

for 1≤ i ≤m. It will be computed along with the prefix functionπ , where

π(q) = max({−1}∪
{

h | h < q andP0 . . .Ph = Pq−h . . .Pq
}

).

The functionsw′ andπ are related. For allq and allℓ with 1≤ ℓ < q−π(q) we haveℓ+w′(ℓ)≤ q.
Indeed,P0 . . .Pπ(q) matchesPq−π(q) . . .Pq andπ(q) is maximal with this property. Thus if we

59

T0 T1 . . . Tt . . . Tt+q−π(q)−1 Tt+q−π(q) . . . Tt+q Tt+q+1

= . . . = = . . . = 6=
P0 . . . Pq−π(q)−1 Pq−π(q) . . . Pq Pq+1

= . . . =
P0 . . . Pπ(q)

Figure 17: A typical situation during string matching.

placeP at positionℓ of P with 1≤ ℓ < q−π(q), we must have a mismatch before positionq.
Thusℓ+w′(ℓ)≤ q.

Assume now the longest prefix of the pattern that matches the substring of the text starting
from positiont is of lengthq, see Figure17. We claim that in this situation we can easily
compute the valuesw(t + ℓ) for ℓ ∈ {0,1, . . . ,q−π(q)−1}. First we observe thatw(t) = q+1
by definition. Forℓ ∈ {1, . . . ,q− π(q)− 1} we claimw(t + ℓ) = w′(ℓ). Indeed aligningP at
positiont + ℓ of the text is the same as aligning it at positionℓ of the pattern, at least for the next
q+ 1 characters. The mismatch withP occurs at positionℓ+ w′(ℓ) and since this number is at
mostq, the mismatch withT occurs att + ℓ+w′(ℓ). Thusw(t + ℓ) = w′(ℓ).

Similar to the computation of theπ function, the computation ofw′ can be done by employing
the same algorithm to match the pattern against itself. Recursive calls tow′ values will only
invoke positions that are smaller and have already been computed.

In the analysis of the running time we would see that for everypositioni there is exactly one
assignment forw(i) whose right hand side involves only a number or a previously knownw value.
The corresponding statement forw′ holds equally, therefore the total running time increases by
at mostO(m+n).

9.6. Chordal Graphs

A chordon a simple cycle is an edgeuv that is not an edge of the cycle but whose endpoints
are vertices on the cycle. A graph ischordal if every simple cycle of length at least four has a
chord. The ability to efficiently recognize chordal graphs played a key role in linear time algo-
rithms for recognizing interval graphs, which are chordal,and is discussed at length in [Gol80]
and the introductory textbook [KT05].

To certify that a graph is not chordal, it suffices to point outa chordless cycle. The checker
must check that this cycle is, indeed, a cycle of the graph, and it must check that this cycle is
chordless. This can be done by marking the vertices and then cycling through the edges to make
sure that no edge that is not part of the cycle has two marked endpoints.

The certificate that a graphG is chordal is similar to the topological sort as a certificatethat
a graph is a directed acyclic graph. If(v1,v2, . . . ,vn) is an ordering of the vertices ofG, then
the rightward neighborsof vi are those neighbors ofvi that lie to its right in the ordering. The
ordering is aperfect elimination orderingif the rightward neighbors of everyvi induce a complete
subgraph.

A graph is chordal if and only if it has a perfect elimination ordering. Thus, an elimination
order can serve as a witness that a graph is is chordal.

60

Algorithm 1 KMP-MATCHER
1: n← length[T]; m← length[P]
2: π ← COMPUTE-PREFIX-FUNCTION(P)
3: q←−1
4: for i =−1 ton−2 do
5: // We haveT[i−q] . . .T[i] = P[0] . . .P[q] andi−q plays the role oft in Figure17
6: while q≥ 0 andP[q+1] 6= T[i +1] do
7: w(i−q)← q+1
8: for ℓ = 1 toq−π(q)−1 do
9: w(i−q+ ℓ)← w′(ℓ)

10: end for
11: q← π[q]
12: end while // eitherq =−1 orP[q+1] = T[i +1]
13: if P[q+1] = T[i +1] then
14: q← q+1
15: else
16: w(i)← 0
17: end if // T[i +1−q] . . .T[i +1] = P[0] . . .P[q]
18: if q = m−1 then
19: print “Pattern occurs with shifti−m”
20: end if
21: end for

Algorithm 2 COMPUTE-PREFIX-FUNCTION
1: m← length[P]
2: π[0]←−1; q←−1
3: for i = 0 to m−1 do // We haveπ[i] = q and henceP[i−q] . . .P[i] = P[0] . . .P[q]
4: while q≥ 0 andP[q+1] 6= P[i +1] do
5: w′(i−q)← q+1
6: for ℓ = 1 toq−π(q)−1 do
7: w′(i−q+ ℓ)←w′(ℓ)
8: end for
9: q← π[q]

10: end while // eitherq =−1 orP[q+1] = P[i +1]
11: if P[q+1] = P[i +1] then
12: q← q+1
13: else
14: w′(i)← 0
15: end if // P[i +1−q] . . .P[i +1] = P[0] . . .P[q]
16: π(i +1) = q
17: end for

61

To understand why, letG be a graph that is not chordal, and suppose(v1,v2, . . . ,vn) is a
perfect elimination ordering. SinceG is not chordal, it has a chordless cycleC of size at least
four. Letvi be the leftmost vertex ofC in the ordering. Then its neighborsv j andvk onC lie to
its right, and sinceC has no chord,v j andvk are non-adjacent, contradicting the assumption that
(v1,v2, . . . ,vn) is a perfect elimination ordering.

It is harder to prove that every chordal graph has a perfect elimination ordering, but this
implication is not needed to be convicted that the input graph is chordal.

A linear-time algorithm to find a perfect elimination ordering is given in [RTL76]. The
obvious checker for the perfect elimination order takes longer to run than it takes to produce the
witness. It must check that for each vertexvi , the rightward neighbors ofvi form a complete
subgraph, which takes time that is quadratic in the number ofthese neighbors. Over allvi , a
single edge can be checked many times.

In [RTL76] an algorithm is given that checks the witness inO(n+ m) time. The trick is to
postpone the checks in such a way that each edge is checked only once.

The algorithm traverses the perfect elimination ordering(v1,v2, . . . ,vn). Inductively,vi has
received a listA(vi) of vertices from its predecessors(v1,v2, . . . ,vi−1). The algorithm ensures that
vi is adjacent to these vertices, or else declares the witness as invalid. If it passes this test, it then
determines the leftmost rightward neighborv j of vi and appends the other rightward neighbors
of vi to A(v j).

For the correctness, if(v1,v2, . . . ,vn) is not a perfect elimination ordering, then somevi has
rightward neighborsv j andvk that are non-adjacent. Suppose without loss of generality that
j < k. It is easily seen by induction fromi to j that if the algorithm has not rejected the ordering
by the time thatA(v j) is checked, thenvk is in A(v j). The algorithm will therefore reject the
witness when it discovers thatA(v j) contains a non-neighbor ofv j .

The algorithm can be implemented to run inO(n+m) time using elementary methods, such
as marking the neighbors ofvi before checkingA(vi), and then unmarking them before moving
on tovi+1.

The algorithm originally proposed for determining whethera graph is chordal included an
algorithm that produces a perfect elimination ordering if agraph is chordal, and an imperfect
elimination ordering if it is not [RTL76]. The paper therefore included the above algorithm for
checking whether an ordering is a perfect elimination ordering. It did not describe how to find
a chordless cycle if the input graph is not chordal. The paperwas then followed by a short
addendum explaining how to do this [TY85].

9.7. Numerical Algorithms

Numerical algorithms are usually implemented in floating point arithmetic. As floating point
arithmetic incurs round-off error, numerical computations do not always yield good approxima-
tions of the true result. Almost every textbook in numericalanalysis contains warning examples.
The field of validated numerical computations [Her94, Rum01] addresses this issue and devel-
ops methods that deliver rigorous results. It is beyond the scope of this paper to elaborate on
validated numerical computations and so we confine ourselves with a simple example.

Let a be a positive real number. We have some method for computing square roots, say the

62

method returnsx0. How good isx0? The following estimate is useful:

|
√

a−x0|=
a−x2

0√
a+x0

≤

a−x2
0

1+x0
if a≥ 1

a−x2
0

a+x0
if a < 1

As a concrete example, let us estimate the distance of
√

2.5 and 1.58. We have

|
√

2.5−1.58| ≤ 2.5−2.4964
1+1.58

=
0.0036
2.58

≤ 0.0015.

9.8. Guide to Literature
Frequently, algorithms research that is performed with efficiency in mind leads implicitly

to methods suitable to certify the output. For various algorithmic problems however, specific
algorithms that allow for certification had to be and have been designed. We briefly survey some
examples.

Graph recognition problems:.For various graph classes certified recognition algorithmsex-
ist. Among these classes are the interval and permutation graphs [KMMS06], the circular and
unit circular arc graphs [KN06], the proper Helly circular arc graphs [LSS07], the HHD-free
graphs [NP07], and the co-graphs [LdR07] (for which there is also a dynamic version [CP06]).
Proper interval graphs are treated in [Mei05] and [HH05], the latter also considers bipartite per-
mutation graphs. Further certified recognition algorithmsfor several hereditary graph classes are
given in [HK07]. For triconnectedness of graphs, linear decision algorithms are known [HT73,
MR92]. The fastest certifying algorithm runs in quadratic time (See Subsection5.4and [Sch10]).
A linear-time certifying algorithm for graphs for which a Hamiltonian cycle is known is avail-
able [EMS10]; this assumes that the Hamiltonian cycle is part of the input.

Permutation groups:.In [CMPS03] certifying algorithms for computational problems involving
permutation groups given by generators are considered. More specifically, the problems consid-
ered are deciding membership, subgroups, computing orbits, the Schreier tree, stabilizers, bases,
and computing the order of the given permutation group.

Geometric Problems:.In [Ber05] a certifying algorithm for minimally rigid planar graphs is
given. The papers [DLPT98] and [MNS+99] describe methods for certifying convexity of poly-
hedra and convex hulls (see Subsection9.1) and various types of planar subdivisions, such as
triangulations, Delaunay triangulations, and convex subdivisions. Another application of local
to global principles for certification of convexity can be found in [Ryb09].

Miscellaneous:.[FK00] shows how to certify a large hidden clique in a semi-random graph and
[McC04] explains how to certify whether a matrix has the consecutive ones property. Certifica-
tion of various basic graph algorithms (with and without witnesses) are discussed in [Met97].

Implementations:.Implementations of many certifying algorithms and the corresponding check-
ers are discussed in [MN99]. For the algorithm library LEDA the concept of certification has
been and is one of the guiding principles.

63

10. Randomization

In the preceding sections, we considered deterministic certifying algorithms and determin-
istic checkers. In this section we consider randomization.We first explain that deterministic
checkers turn Monte Carlo algorithms into Las Vegas algorithms. We then give three examples
of randomized certification. The first two examples have a checker that does not require a wit-
ness. In the third example the provided witness allows for a faster running time of the randomized
checker. Finally, we extend Section5 to randomized algorithms.

10.1. Monte Carlo Algorithms resist Deterministic Certification

Consider a Monte Carlo algorithm for a functionf , i.e., a randomized algorithm which on in-
putx outputsf (x) with probability at least 3/4 and may output anything otherwise. The running
time is bounded byT(|x|).

Assume now that there were an efficient certifying algorithmQ with the same complexity: on
input x algorithmQ outputs a triple(x,y,w) passing the witness predicateW with probability at
least 3/4 and may output anything else otherwise. It has running timeO(T(|x|)). Further assume
there is a deterministic checkerC that checks the triple(x,y,w) in time O(T(|x|)). We can turn
Q into a Las Vegas algorithm forf as follows: We first runQ. If the triple(x,y,w) returned byQ
passesW , we returny. Otherwise, we rerunQ.

The resulting randomized algorithm always returns the correct result f (x) and has an ex-
pected running time inO(T(|x|)). Observe that each round has an expected running time in
O(T(|x|)) since both the algorithmQ and the checkerC run within this time. Also observe that
the expected number of rounds is constant, since the successprobability is at least 3/4.

Does this observation imply that Monte Carlo algorithms areinherently unsafe? No, it only
says that the concept of deterministic certification does not apply to them. Program verification
does apply and Monte Carlo algorithms are frequently quite simple so that verification may
be(come) feasible. Another option is to deviate from the deterministic checkers by allowing
randomization and error. We describe three examples in the next three subsections. The first two
examples demonstrate use of randomized certification without the help of a witness, whereas
the third example makes use of a witness to provide randomized certification of the output of a
randomized algorithm.

10.2. Integer Arithmetic

To check the result of a multiplication computation, the following method used to be taught
in German high-schools and is already described by Al-Kharizmi in his book on algebra. It is
known as “Neunerprobe” in German, “casting out nines” in English, and “preuve par neuf” in
French.

We want to check whetherc= a·b. We form the repeated digit sumssa, sb andsc of a, b and
c. The digit sum is formed by adding the digits of a number. If the result is a multi-digit number,
the process is repeated, until one arrives at a one digit number. For example,

4572→ 18→ 9.

64

Then one multipliessa andsb with a two-digit result; lets be the digit sum of the the result. If
s 6= sc, thenc is not equal toa ·b. If s= sc, thenc may or may not be equal toa ·b.

The digit sum of a positive integera is nothing but the remainder ofa modulo 9 (with repre-
sentatives 1 to 9 instead of 0 to 8). This follows from 10k mod 9= 1 for all k≥ 1. Thus casting
out nines rests on the statement

if c = a ·b thenc mod 9= ((a mod 9) · (b mod 9)) mod 9.

Of course, a similar statement holds for any integerq instead of 9, i.e.,

if c = a ·b thenc modq = ((a modq) · (b modq)) modq.

Let sa = a modq and definesb andsc analogously. Lets= (sa ·sb) modq. If s 6= sc, thenc 6= a·b.
If s= sc, q dividesc−a ·b. The number of distinct prime divisors ofc−a ·b is bounded. Thus,
if we chooseq from a sufficiently large setP of primes, the test will showc 6= a ·b with high
probability. The following theorem quantifies these statements.

Theorem 11. Let a, b, and c be positive integers bounded by22k
, with k≥ 5. If c 6= a ·b then

1. for any integer d> 0 the probability that a prime number x taken uniformly at random
from the primes within{2, . . . ,2k+2d+3−1} divides c−a ·b is at most1/2d,

2. the probability that an integer x taken uniformly at random from{1, . . . ,2k+5−1} does not
divide c−a ·b is at least1/(2 · (k+5) ln2), and

3. the probability that at least one of L= 2k+ 10 integers x1,x2, . . . ,xL taken uniformly at
random from{1, . . . ,2k+5−1} does not divide c−a ·b is at least1/2.

Proof: 1.) The absolute value ofc−ab is bounded by 22
k+1+1. To show the statement, we will

show that there are sufficiently many prime numbers in the interval {2, . . . ,2k+3+2d−1}, and
then, by bounding the number of prime factors of any number nolarger than 22

k+1+1, we will
show that most of these prime numbers are not prime factors of|c−ab|.

There are at least 2k+3+2d/((k+ 3+ 2d) ln2) prime numbers which are contained in the
interval{2, . . . ,2k+3+2d−1}. (This is in accordance with the prime number theorem that there are
approximatelyx/ ln(x) prime numbers smaller thanx and follows from Dusart’s bound [Dus98],
since 2k+3+2d > 599). On the other hand for any integerx that hasℓ distinct prime factors, it must
be the case thatℓ! ≤ n. It suffices for us to show that the number of primes in{2, . . . ,2k+3+2d−1}
is by a factor of 2d larger than the number of distinct prime factors of|c−ab|. Thus it suffices to
show that

(

2k+3+2d

2d · (k+3+2d) ln2

)

! ≥ |c−ab|.

Since 2ln2< 2, for k≥ 1 it is true that

2k+3+2d ≥ (2k+1+1) ·22d · (2ln2),

65

thus
2k+3+2d

22d ·2ln2
≥ 2k+1+1.

By a simple expansion of the fraction it follows that

2k+3+2d

2d · (k+3+2d) ln2
· (k+3+2d)

2d2
≥ 2k+1+1 (17)

Sincek ≥ 1 andd ≥ 1, we have(k+ 3+ 2d)/(2d2) ≤ log(2k+3+2d/(2d · (k+ 3+ 2d)eln2)):
Indeed, the inequality holds fork = 1 andd = 1. Furthermore, fork,d ∈R≥1, the partial deriva-
tives with respect tok andd of the left side of the equation are smaller than the respective partial
derivatives of the right side of the equation. We can thus replace the second factor on the left side
of Equation17and it follows that

2k+3+2d

2d · (k+3+2d) ln2
· log

(

2k+3+2d

2d · (k+3+2d)eln2

)

≥ 2k+1 +1.

Stirling’s inequalityx! ≥ (x/e)x implies log(x!)≥ xlog(x/e), applying this we proceed to obtain
the desired inequality

(

2k+3+2d

2d · (k+3+2d) ln2

)

! ≥ 22k+1+1≥ |c−ab|.

2.) The second statement follows directly from the first by again noting that fork ≥ 11
andd = 1 the number of primes in{2, . . . ,2k+5−1} is at least 2k+5/((k+5) ln2).

3.) For anyi, 1≤ i ≤ L, the probability thatxi dividesc−ab is at most 1−1/(2(k+5) ln2)
by the second statement. Therefore, the probability that all xi ’s dividec−ab is at most

(

1− 1
2(k+5) ln2

)L

= e
L·ln

(

1− 1
2(k+5) ln2

)

≤ e
− L

2(k+5) ln2 ≤ e− ln2 =
1
2
.

�

The asymptotic complexity of division is the same as the one of multiplication. Intuitively,
multiplication is simpler than division. We can check a divisiona/b = c by checking whether
a = c·b.

10.3. Matrix Operations

Given threen×nmatricesA, B, andC overZ2, we want to verify thatAB=C. There is an ob-
vious way to check the equality: compute the product ofA andB and compare the result entry by
entry withC. This takes timeO(nω), whereω is the exponent of matrix multiplication [CW82].

Already in 1977, R. Freiwalds [Fre77] described a randomized algorithm for verifying matrix
multiplication. The algorithm is simple. We generate a random vectorx ∈ Z

n
2 and compute

y = A(Bx)−Cx. If y is the zero vector, we accept the input, i.e., believe thatC = AB, otherwise

66

we state thatC 6= AB. The computation ofy takes three matrix-vector products (Bx, A(Bx), and
Cx) and one vector addition and hence takes timeO(n2).

Let X = AB−C. Theny = Xx. If AB= C and henceX = 0, we havey = 0 for any choice of
x. If y 6= 0, thenX 6= 0 and henceAB 6= C. It remains to estimate the probability thatX 6= 0 and
Xx= 0.

Lemma 18 ([Fre77]). Let z be a nonzero n-vector overZ2. Then

prob(zTx 6= 0) = 1/2,

where x is a random n-vector overZ2.

Proof: Sincez is nonzero, there is anℓ with zℓ = 1. Then

zTx = xℓ + ∑
j 6=ℓ

zjx j

and hence for any choice of thex j ’s, j 6= ℓ, there is a exactly one choice forxℓ such thatzTx 6= 0.
�

Theorem 12 ([Fre77]). Let X be a nonzero n×n matrix overZ2. Then

prob(Xx 6= 0)≥ 1/2

where x is a random n-vector overZ2.

Proof: SinceX is nonzero, it has at least one nonzero row. We apply the previous Lemma to
this row. �

For further information on certification of matrix productssee [KS93]. We now turn to an
example that requires a witness to allow for the randomized certification.

10.4. Cycle Bases

We discuss the certification of minimum weight cycle bases ofundirected graphs. The fastest
known algorithm for computing a minimum weight basis is a Monte Carlo algorithm with run-
ning timeO(mω), whereω is the exponent of matrix multiplication [AIJ+09]. The algorithm can
be made certifying and the witness can be checked in Monte Carlo timeO(m2). We describe the
required modifications and show how to check the witness. We refer the reader to [KLM +09] for
background information on cycle bases.

Let G = (V,E) be a connected graph withn vertices andm edges and letw : E→ R>0 be a
positive weight function on the edges ofG. All results of this section also hold for nonnegative
weight functions, but some of the arguments are shorter for positive weight functions. Acyclein
G is an even subgraph ofG and acircuit is an even connected subgraph with all vertices having

67

2

1 3

4
C1 C2 C3 C4

5

6
8

7

Figure 18: The leftmost figure shows a graph with eight edges.The next four figures show four circuits in this
graph. The circuitC1 has the vector representationC1 = (0,1,1,1,1,1,0,0). Let D = (1,1,1,1,0,0,0,0) be the
circuit formed by the edges 1 to 4. ThenD = C1 +C2+C3 +C4. The set{C1,C2,C3,C4} is a cycle basis. Its weight
is equal to three times the sum of the weights of edges 1 to 4 plus 2 times the weight of edges 5 to 8.

degree two, see Figure18. The weightw(C) of a cycle is the sum of the weights of its edges.
We represent cycles as vectors inZ

E
2 ; the coefficient corresponding to an edge is 1 if and only

if the edge belongs to the cycle. The space of all cycles is then a vector space of dimension
ν = m−(n−1); observe that the addition of two cycles corresponds to the symmetric difference
of their edge sets and hence yields a cycle. A setB = {C1, . . . ,Cν } of cycles is a cycle basis if
any cycleC can be written as a linear combinationC = ∑i λiCi with λi ∈ Z2 for all i. Let T be a
spanning tree ofG. For any non-tree edgee let Ce be the circuit formed bye plus the path inT
connecting the endpoints ofe. There arem−n+1 such cycles. They are independent and form a
basis; this is called the fundamental cycle basis. The weight of a basis is the sum of the weights
of the cycles comprising the basis. A minimum weight basis isa basis of minimum weight.

The following lemma defines a certificate for minimum weight bases. For its proof, we first
observe that every graph has a minimum cycle basis consisting only of circuits: Indeed, if there
is a cycleC in a basisB that is not a circuit, thenC is the union of two cyclesC′ andC′′ of
smaller weight. ThenB−C+C′ andB−C+C′′ have smaller weight thanB and at least one
of them is a basis.

Lemma 19 ([dP95]). A set of cycles{C1, . . . ,Cν } is a minimum cycle basis if there are vectors
S1,. . . ,Sν ∈ {0,1}E such that11

(a) 〈Si,Cj〉= 0 for 1≤ i < j ≤ ν,

(b) 〈Si,Ci〉= 1,

(c) Ci is a shortest circuit with〈Si ,C〉= 1.

Proof: Let k be maximal such thatBk = {C1, . . . ,Ck} is contained in some minimum cycle
basis and assume, for the sake of a contradiction, thatk< ν. LetB′= {C1, . . . ,Ck,Dk+1, . . . ,Dν }
be a minimum cycle basis extendingBk. Then

Ck+1 = ∑
i≤k

λiCi + ∑
i>k

λiDi (18)

11〈 , 〉 denotes the inner product of vectors.

68

and hence
1 = 〈Sk+1,Ck+1〉= ∑

i>k

λi〈Sk+1,Di〉.

Thus there must be anℓ > k with λℓ = 〈Sk+1,Dℓ〉 = 1. By (c),w(Ck+1)≤ w(Dℓ). Solving (18)
for Dℓ gives a representation ofDℓ in terms ofB′′ = B′ \{Dℓ}∪{Ck+1}. We conclude thatB′′

is a basis of weight no larger thanB′. Thus there is a minimum basis extendingBk+1. �

We next describe a probabilistic check of conditions (a), (b), and (c) that operates in time
O(m2). The following observation will be useful.

Lemma 20 ([AIJ +09]). Let A1, . . . ,Ak,S∈ Z
E
2 . Then

〈Ai ,S〉= 1 for some i,1≤ i ≤ k =⇒ prob(〈 ∑
1≤i≤k

λiAi ,S〉= 1) = 1/2,

where theλi , 1≤ i ≤ k, are chosen independently and uniformly inZ2.

Proof: Assume〈Aℓ,S〉= 1. Then for any choice of theλi, i 6= ℓ, there is exactly one choice for
λℓ such that〈∑1≤i≤k λiAi ,S〉= 1, namelyλℓ = 1+ 〈∑i 6=ℓ λiAi ,S〉.

Alternatively, we observe that
〈 ∑
1≤i≤k

λiAi,S〉

is the inner product of a random vector(λ1, . . . ,λk) with the nonzero vector(〈A1,S〉, . . . ,〈Ak,S〉)
and then appeal to Lemma18. �

We first show how to verify properties (a) and (b). LetA be matrix whose rows are the vectors
ST

1 to ST
ν and letB be the matrix whose columns are the cyclesC1 to Cν . We need to verify that

E := AB is a lower-diagonal matrix with ones on the diagonal. Property (b) is easily verified
in time O(νm) = O(m2). We simply compute the products〈Si,Ci〉 for 1≤ i ≤ ν. We turn to
property (a). The solution lies in Lemma20. Consider the above-diagonal elements in thej-th
column, i.e., the elementsEi, j for i < j. One of these elements is nonzero if and only if one of
the vectorsS1 to Sj−1 is non-orthogonal toCj . Lemma20 is a probabilistic test for this property.
We choose random numbersλi ∈ Z2, 1≤ i ≤ n, and form the vectors

Rj = ∑
i< j

λiSi , 1≤ j ≤ n.

These vectors can be computed in total timeO(nm). We next form the products

〈Rj ,Cj〉, 1≤ j < n.

If one of these products is nonzero,C is not a lower-diagonal matrix. Conversely, ifC is not a
lower-diagonal matrix, then with probability at least one-half, one of these products is nonzero
by Lemma20.

We next turn to condition (c). A circuitC is isometricif for any two verticesu andv in C, a
shortest path connectingu andv is contained inC.

69

Lemma 21 ([Hor87]). A minimum cycle basisB consists only of isometric circuits.

Proof: We argue by contradiction. SupposeC is not an isometric cycle but contained in a
minimum cycle basisB. Then there are verticesu andv in C such thatC does not contain a
shortest path connectingu andv. Let p be a shortest path connectingu andv and splitC atu and
v into C1 andC2. ConsiderC′ = C1 + p andC′′ = C2 + p. Both cycles are cheaper thanC and
eitherB−C+C′ or B−C+C′′ is a basis. �

The argument of the proof also shows that any cycle that fulfills condition (c) in Lemma19
is an isometric circuit. To certify condition (c), we assumefor simplicity from now on that the
shortest path between every two vertices of the input graph is unique; such a situation can be
simulated by adding a random infinitesimally small weight toevery edge. For further details
see [AIJ+09].

Lemma 22 ([AIJ +09]). Let C be an isometric circuit. Then for each v∈C there is an edge e=
xy∈C such that C consists of the shortest paths from v to x and y andthe edge e.

Proof: Consider any edge ine= xyof C. SplittingC\eatv gives us a pathqv,x and a pathqv,y.
There is a choice ofe (there might be two) such that both paths have weight at mostw(C)/2.
SinceC is isometric, it contains a shortest path connectingv to x and a shortest path connecting
v to y. These paths must beqv,x andqv,y, respectively. �

We use the following witness for supporting the check of condition (c).

• For each vertexv, a shortest path treeTv rooted atv.

• A list L = (D1, . . . ,DN) of circuits that allegedly contains all isometric circuits. The circuits
are sorted by weight and the total size (= number of edges) of the circuits inL is at mostnm.

• For an edgee= xy and a vertexv letCv,e = pvx+e+ pvy, wherepvx is the path fromv to x
in Tv. For eache andv, the algorithm provides a link to a circuitD ∈ L with D = Cv,e or a
proof thatCv,e is non-isometric. The proof is a pair(a,b) of vertices onCv,e such that the
shortest path connecting(a,b) is not part ofCv,e.

The algorithm in [AIJ+09] computes such a listL and the additional information stipulated above.
Verification is as follows.

We first verify that the trees are shortest paths trees as described in Subsection2.4; we then
verify that all elements ofL are circuits, and that the total size of the circuits inL is nm. We
then choose for each edgee a random labelℓ(e) ∈ Zp for a primep (p = 2 is sufficient) and
precompute for eachv and each nodex of Tv, the sum of the labels of the edges on the path from
v to x and for eachD in L the sum of the labels of the edges inD. This takes timeO(nm). For
eache= xy andv we perform the following test:

70

• If Cv,e is linked toD in L we compute the label ofCv,e (as the sum ofℓ(e) and the labels
of the endpoints ofe in Tv) and compare it to the label ofD. If the labels are different, we
reject. The probability of failure to detectCv,e 6= D is bounded by 1/p.12 (This test was
proposed in [WC81] as a general method for verifying equality of sets.)

• If Cv,e is claimed to be non-isometric and(a,b) is provided as a proof we verify thata and
b lie on the pathspv,x∪ pv,y wheree= xy; saya lies on the former path andb lies on the
latter. If a andb would lie on the same path, we reject, since subpaths of shortest paths
are shortest. We then compute the lengths of the two paths inCv,e connectinga andb (one
is w(pv,a)+ w(pv,b) and one isw(e)+ w(pa,x)+ w(pb,y)) and verify that these length are
larger thanw(pa,b). If not, we reject.

We have now verified thatL contains all isometric circuits. It remains to verify that the
circuits selected satisfy (c). LetL = {D1, . . . ,DN } and recall thatL is sorted in order of increasing
weight. We choose a randomλ j ∈ {0,1} for each j and for eachℓ, 1≤ ℓ ≤ N form the sum
∑ j≤ℓ λ jD j . For eachi, 1≤ i ≤ µ, letCi = Dπ(i). Verify

〈Ci ,Si〉= 1 and〈 ∑
j<π(i)

λ jD j ,Si〉= 0.

By Lemma20, the latter test fails with probability 1/2 if there is aj < π(i) with 〈D j ,Si〉= 1.

Theorem 13. The witness for minimum cycle bases defined above can be checked in proba-
bilistic time O(m2). The minimum cycle basis algorithm of [AIJ+09] can compute this witness
without loss of efficiency.

10.5. Definitions

We extend the definitions and theorems of Section5 to randomized algorithms. Aprob-
abilistically checkable strong witness predicatefor an I/O-specification(ϕ,ψ) is a predicate
W : X×Y⊥×W satisfying the following properties:

Strong Witness Property: Let (x,y,w) ∈ X×Y⊥×W satisfy the witness predicate. Ify =⊥, w
proves thatx does not satisfy the precondition and ify∈Y, w proves that(x,y) satisfies the
postcondition, i.e.,

∀x,y,w (y =⊥ ∧W (x,y,w)) =⇒ ¬ϕ(x) and
(y∈Y∧W (x,y,w)) =⇒ ψ(x,y)

(19)

Randomized Checkability: For a triple(x,y,w) there is a trivial way to determine the value
W (x,y,w) with high probability. I.e., there is a trivial randomized algorithm that computes
W (x,y,w) correctly with probability at least 3/4 and this bound on the error probability is
trivial to understand.

12 LetC andD be subsets ofE withC 6= D. Lete0∈C⊕D be an edge in the symmetric difference ofC andD. Then
for each choice of labels of the edges inE \e, there is exactly one choice forℓ(e0) such that∑e∈C ℓ(e) = ∑e∈D ℓ(e).

71

Simplicity: The implications (19) have a simple proof.

The first and the last item are as in Section5. Observe that the checker is allowed to reject a
correct output and witness or accept a wrong output and witness with probability 1/4. The latter
is important; otherwise the construction of Subsection10.1would apply.

A randomized strongly certifying algorithmfor I/O-specification(ϕ,ψ) and probabilistically
checkable strong witness predicateW is an algorithm with the following properties:

• It halts for all inputsx∈ X.

• On inputx∈ X it outputs ay∈Y⊥ and aw∈W such thatW (x,y,w) holds with probability
at least 7/8.

The simplicity and checkability consideration of Subsection5.5apply.
The definition above captures all examples given in this section. We illustrate this for our last

example: minimum weight cycle bases. The inputx is an edge-weighted undirected graph andy
is a set{C1, . . . ,Cν } of ν = m−n+ 1 circuits inG. The witness consists of vectorsS1, . . . ,Sν
of vectors in{0,1}E, a listL = {D1, . . . ,DN } of circuits, and some more stuff. In order for the
witness property to hold, the listL must contain all isometric circuits,〈Si,Cj〉= 0 for i < j, and
Ci is a shortest circuit onL whose inner product withSi is one. The checker may fail to verify
the latter property (and the algorithm may fail to deliver a set of circuits with the latter property);
in this situation,{C1, . . . ,Cν } is a basis, but not a minimum weight basis.

We next define the notions of arandomized certifying algorithmand randomized weakly
certifying algorithm. A probabilistically checkable witness predicate for an I/O-specification
(ϕ,ψ) is a predicateW : X×Y⊥×W satisfying the following properties.

Witness Property: Let (x,y,w) ∈ X×Y⊥×W. satisfy the witness predicate. Ify=⊥, w proves
thatx does not satisfy the precondition and ify∈Y, w proves that eitherx does not satisfy
the precondition or(x,y) satisfies the postcondition, i.e.,

∀x,y,w (y =⊥ ∧W (x,y,w)) =⇒ ¬ϕ(x) and
(y∈Y∧W (x,y,w)) =⇒ ¬ϕ(i)∨ψ(x,y)

(20)

Randomized Checkability: For a triple(x,y,w) there is a trivial way to determine the value
W (x,y,w) with high probability. I.e., there is a trivial randomized algorithm that computes
W (x,y,w) correctly with probability at least 3/4 and this bound on the error probability is
trivial to understand.

Simplicity: The implications (20) have a simple proof.

Items 1 and 3 are as in Section5.
A randomized certifying algorithm for I/O-specification(ϕ,ψ) is a randomized algorithm

with the following property: For all inputsx∈ X, it halts and outputs ay∈Y⊥ and aw∈W such
thatW (x,y,w) with probability at least 7/8.

A randomized weakly certifying algorithms for I/O-specification(ϕ,ψ) is a randomized al-
gorithm with the following properties:

72

• For inputsx∈ X satisfying the precondition, it halts with probability at least 7/8.

• If it halts onx∈ X for some choice of randomness, it halts onx and outputs ay∈Y⊥ and
aw∈W such thatW (x,y,w) with probability at least 7/8.

An early version of the definition of randomized certification can be found in [Sch09], where
also complexity classes based on randomized certifyablityare defined. For a restricted com-
putation model it is shown that the gap in the best running times between a randomized and a
deterministic certifying algorithm can be arbitrarily large.

We next generalize Theorem7; Theorem5 is the special caseϕ = T and hence also general-
izes. Let(ϕ,ψ) be an I/O-specification and letP be a randomized program (in a programming
languageL with well-defined semantics) with I/O-behavior(ϕ,ψ).

We need to make an additional assumption onP, namely thatP computes a partial function.
Let f : X→Y be a partial function.P computesf if for any x∈ X, f (x) is defined if and only
if P halts onx for some choice of randomness. Moreover, iff (x) is defined,P outputsf (x) with
probability at least 7/8. We comment below, why the assumption thatP computes a function is
needed. We assume that we have a proof (in some formal systemS) of the following statement:

if P halts onx for some randomness,
it halts onx with probability at least 7/8 and
there is a valuef (x) that is output with probability at least 7/8 and

and satisfies¬ϕ(x)∨ψ(x, f (x)) and
ϕ(x) =⇒ P halts on inputx with probability at least 7/8.

(21)

We usew2 to denote the proof. We extendP to a programQ which on inputx does the following:
If P halts on inputx, Q outputsP(x) and a witnessw = (w1,w2) wherew1 is the program textP
andw2 is a proof for (21).

The witness predicateW (x,y,w) holds ifw has the required format, i.e.,w= (w1,w2), where
w1 is the program text of some programP, w2 is a proof for (21), andy = f (x), where f is the
partial function defined byP.

The following randomized algorithmC decides the witness predicate. On input(x,y,w), it
first checks thatw2 is a proof of (21) whereP is given byw1. It then runsP on x for k different
choices of randomness (thek runs are performed in parallel);k will be fixed below. Ifk/2+1 of
the runs returny, the checker stops and accepts. Otherwise, it rejects or runs forever.

1. W has the witness property: IfW (x,y,w), (21) holds and henceP computes a function;
call it f . Also,y = f (x) by the definition ofW .

2. C decidesW : SinceC checks the proofw2, we may assume thatP satisfies (21). If P never
halts onx, C diverges. IfP halts onx for some randomness, it halts onx and returnsf (x)
with probability at least 7/8. The probability that, amongk runs ofP, k/2 or more produce
an output different fromf (x) is at most

∑
i≥k/2

(

k
i

)(

1
8

)i(7
8

)k−i

≤∑
i

(

k
i

)(

1
8

)k/2

≤ 2k
(

1
4

)k/2(1
2

)k/2

=

(

1
2

)k/2

≤ 1/4

73

where the last inequality holds fork≥ 4. Thus ify = f (x), prob(W (x,y,w))≥ 3/4 and if
y 6= f (x), prob(W (x,y,w))≤ 1/4. ThusC decidesW .

3. Simplicity: The arguments in the preceding items are straightforward.

4. Efficiency: The running times ofQ andC are asymptotically no larger than the expected
running time ofP. Consider a particularx on whichP halts for some choice of randomness.
ThenP halts onx with probability at least 7/8. LetT be the expected running time ofP on
x, where we average over the halting runs. Then only a fraction1/10 of the halting runs can
take more than 10T steps and henceP halts onx within 10T steps with probability at least
(9/10)/(7/8). A small adaption of the computation in 2) shows that sufficiently many
runs ofP stop within 10T steps. The same argument holds true for the space complexity.

We summarize the discussion.

Theorem 14. Every randomized program computing a function has an efficient weakly certifying
counterpart. This assumes that a proof for (21) in a formal system is available.

How important is it thatP computes a function? Consider the following randomized algo-
rithm. It takes as an input the description of 10 Turing machines and produces 10 random bits.
The postcondition is that for at least onei, thei-th bit tells whether thei-th Turing machine halts
on empty input. This postcondition is satisfied with probability 1−1/210. There seems to be
now way to boost the success probability of this program to a higher value and there seems to be
now way to check the output of this program.

11. Certification and Verification

We give examples where certification and verification can support each other. Some proper-
ties of the algorithm are more easily verified and other are more easily certified.

Sorting:. The example is due to Gerhard Goos (personal communication). The input to a sorting
algorithm is a set of elements from a linearly ordered set. The output is the same set but in sorted
order. Sortedness is easily checked and for a subclass of sorting algorithm integrity of the input
is easily verified.

It is trivial to check that a sequence of elements is sorted, say in ascending order. We simply
step through the sequence and check that we see successivelylarger elements. It is difficult to
check that two sets agree. In fact, the most efficient way to check equality of sets is to sort them
and check equality of the sorted sets.

General sorting algorithms frequently use a subroutineswapthat exchanges the position of
two elements:swapis an extremely short program (less than three lines in most programming
languages) whose correctness is obvious (and is also easilyproven). Any program which only
uses (a correct)swapto move elements around, outputs a permutation of its input set.

74

Minimum Cut:. Our second example is more subtle. A cut in an undirected graph G = (V,E) is
any subsetS of the vertices which is neither empty nor the full set of vertices, i.e., /06= S 6= V.
Let c be a cost function on the edges ofG. The weight of a cutS is the total cost of the edges
having exactly one endpoint inS, i.e.,

c(S) = ∑
e;|e∩S|=1

c(e).

A minimum cut is a cut of minimum weight. We do not know of a certificate for minimum cuts.
There is a very efficient Monte Carlo algorithm for computinga minimum cut [KS96]. Here, we
consider the following generic approach to computing a minimum cut.

The algorithm works recursively. It uses a subroutine, which does the following: it deter-
mines two verticess andt (s andt are not input to the subroutine, but the subroutine determines
them) and a cutSwhich is minimal among all cuts containings but nott. Assume that we call
the subroutine forG and it returnss, t and a cutS. There are two cases: eitherS is a minimum
cut in G or the minimum cut inG does not separates and t. In the former case we are done
(however, we do not know this) and in the latter case, we may collapses and t into a single
vertex, i.e., removes andt from the graph, add a new vertexz and for anyv∈V \ {s, t } assign
c(s,v)+c(t,v) as cost of the edge13 (z,v), and determine a minimum cut in the reduced graph.
The minimum cut in the reduced graph will also be a minimum cutin the original graph (after
replacingzby {s, t }). An iterative version of the algorithm is as follows:

while G has at least two verticesdo
determine two verticess andt in G and a cutSwhich is minimal among all cuts containing
s but nott;
collapsesandt.

end while
output the smallest cut found in any iteration;

Given the correctness of the subroutine, the algorithm is correct. Stoer and Wagner [SW97],
simplifying an earlier algorithm of Nagamochi and Ibaraki [NI92], gave an efficient algorithm
for the subroutine. Arikati and Mehlhorn [AM99] made the subroutine certifying. The certifying
version computess, t, the cutS and a flow f from s to t of valuec(S). The flow proves the
minimality of Sby the min-cut-max-flow theorem (Lemma7).

12. Reactive Programs and Data Structures

Reactive programs run forever. They keep state informationand receive inputs. They return
outputs and update their internal state. In the algorithms community, reactive programs are
called data structures and this is the terminology which we are going to use. The papers [AL94,
BEG+94, SM90, SM91, BS95, BSM95, SWM95, BS94, FM99] discuss certification of data
structures.

13Of course, ifv is not connected to eithersor t, there is no need for introducing an edge connectingv andz.

75

C
er

tifi
ed

d
at

a
st

ru
ct

u
reA

CheckerC

DatastructureD

Figure 19:D is a data structure implementation andC monitors its behavior. Any input is passed toC which then
forwards it, maybe in modified form toD. D reacts to it,C inspects the reaction ofD and returns an answer to
the environment. IfD is correct, the combination ofC andD realizes the abstract data typeA. If D is incorrect,C
catches the error.

We distinguish between abstract data types (= specifications of the intended behavior of the
data structure) and implementations (= programs exhibiting a certain behavior). The question is
how to certify that a certain implementation implements a certain data type. Akin to certifying
programs, we consider certification of data structures.

We explore the following scenario, see Figure19. We have an abstract data typeA, a data
type implementationD allegedly realizing an abstract data typeA′, and a monitor or checkerC.
The checker monitors the execution of the data structureD. We may also call it a watchdog. The
pairC+D is supposed to implement the behaviorA as follows: The checkerC interacts with the
environment and offers the interface of the abstract data typeA. It also interacts withD through
the interface ofA′. The purpose of the checker is twofold:

• The checker offers the behaviorA to the environment. It makes use ofD to do so. Ideally,
all the hard work is done byD andC is only a simple interface layer.

• It checks thatD correctly implementsA′. If D does,C is supposed to keep quiet. IfD does
not,C must raise an exception. This may happen immediately or eventually. It the former
caseC must raise an exception immediately after the first incorrect reaction byD, in the
latter case, the exception may be delayed and only must come eventually.

We callC a monitor that realizes the abstract data typeA in terms of the abstract data typeA′.
Such a monitor is useful whenever the implementation ofA′ is unknown or untrusted.

The abstract data typeA′ should be at least as strong asA; otherwise, we would not speak
of checking but of enhancing. In the interest of certifyability it may be necessary to makeA′

stronger thanA. The stronger behavior may be easier to check. This is akin tothe situation for
algorithms. In order to achieve certifyability, we solve a more general problem.

76

We denote operations performed onD by D.op(argumentlist) and operations performed on
the abstract data type byop(argumentlist).

We will present the following results: There is a checker forordered dictionaries (A = A′ =
ordered dictionary) that catches errors immediately and addsO(1) overhead to each dictionary
operation. Since ordered dictionaries are stronger than priority queues, we may also use the
checker withA = priority queue andA′ = ordered dictionary. So ordered dictionaries are fairly
easy to check.

For the second class of results we haveA = A′ = priority queue. We will see that there is
checker withO(1) amortized overhead per operation that catches errors eventually [FM99]. We
will also see that a checker that wants to catch errors immediately, must incur an amortized
logarithmic overhead per operation. This is also the cost ofpriority queue operations. In other
words, priority queues are hard to check and a checker that wants to catch errors immediately
must essentially implement a priority queue by himself.

12.1. The Dictionary Problem

The dictionary problem for a universeU and a setI of informations asks to maintain a setS
of pairs(x, i) ∈U × I with pairwise-distinct keys (= first elements) under operations insert(x, i),
delete(h), find(x), set inf (h, i), key(h) andinf (h). Here,h is a handle to (= pointer to) a pair in
the dictionary.

Insert(x, i) adds the pair(x, i) to Sand returns a handleh to the pair in the data structure. If
there is already a pair inS with key x, the information of the pair is replaced byi. Delete(h)
deletes the pair with handleh and invalidatesh; h must be a valid handle of a pair inS. Find(x)
returns a handle to the pair with keyx (if any) and returns a special elementnil otherwise,
set inf (h, i) sets the information of the pair handled byh to i, andkey(h) and inf (h) return the
key and information of the pair handled byh, respectively. If any of operations above is supplied
with an invalid handle, the outcome of the operation and all subsequent operations is unspecified.

In the ordered dictionary problem, we assume thatU is linearly ordered and require the
additional operationslocate(x) andfindmin(). The former returns a handle to the pair(y,) ∈ S
with minimal key y≥ x, if there is such a pair. Otherwise, the special valuenil is returned.
Findmin() returns a handle to the pair inSwith minimal key. IfS is empty, it returnsnil.

Checking Ordered Dictionaries with Constant Overhead:.We show that ordered dictionaries
can be checked with constant overhead per operation. Errorsare caught immediately.

Let D be the alleged implementation of an ordered dictionary and let S be the set stored in
the dictionary. The checker maintains a doubly-linked listof triples(x, i,h) sorted by key. There
is one triple for each pair(x, i) ∈ S; h is a handle to an item inD. The item handled byh contains
the pair(x, r), wherer is a handle to the triple(x, i,h) in L. In other words, corresponding pairs
in D andL are linked to each other andL contains the pairs inS in sorted order. How do we
make sure thatr is a handle intoL and not a handle to some uncontrolled location in memory
which by accident points back toD. The standard solution for this problem is to storeL in the
first |L| entries of an arrayLA, one list item per entry of the array. The handler is accepted if
it points into the first|L| entries ofLA. After a deletion fromL, the element in positionLA[|L|]
of LA is moved to the position of the deleted element. The cross-pointers betweenL andD are

77

changed accordingly; for the change inD, the operationD.set inf (h,) is used. We next discuss
the implementations of the operations:

Insert(x, i): The checker callsD.locate(x) andD returns a handleh or nil. In the former case
h points to a pair(y, r); C usesD.key(h) andD.inf (h) to read outy andr. If r does not point into
L, C declares failure. Let(z, j,h′) be the entry ofL handled byr. If h′ 6= h or z 6= y, C declares
failure. Otherwise, it checks thatx≤ y and thatx is larger than the key in the triple preceding
(y, j,h). If not, the checker declares failure. Ify = x, it replacesj by i, and ifx < y, it inserts a
triple (x, i,) into L just before the triple with keyy. Letsbe a handle to this triple. Next it inserts
(x,s) into D and stores the returned handle in the triple with handles. It returnss. If D returns
nil, C checks thatx is larger that the key in the last item ofL. If not, C declares failure. If so,
it inserts a triple(x, i,) into L after the last item ofL. Let s be a handle to this triple. Next, it
inserts(x,s) into D and stores the returned handle in the triple with handles. C returnss.

Delete(s): s is a handle to an item(x, i,h) in the listL. We remove the pair with handleh
from D and we remove the item(x, i,h) from L.

findmin(): The checker callsD.findminand obtains a handleh to a pair(x, r). As above the
checker checks that the pair inL handled byr is equal to(x, ,h). It also checks thatr handles
the first element ofL. If so, it returnsr.

We leave the implementation of the other operations to the reader.

Ordered dictionaries can be used to sort. Sortingn items takesΩ(nlogn) comparisons. There
is a nice division of labor. After the insertion ofn elements, the checker has the sorted listL of
the elements. However, it has performed onlyO(n) comparisons. The hard work of locating a
new element in the current list is done byD; thenC performs two comparisons to verify thatD
did not lie. In the next section, we will show that the interface of priority queues is too narrow
and does not allow a similar division of labor.

12.2. Priority Queues

A priority queue offers the operationsinsert(x, i) anddelmin(). Delmin returns and deletes
pair with minimum key. The priority queue operations are a subset of the ordered dictionary
operations and hence the construction of the preceding section is also a monitor that realizes
priority queues in terms of ordered dictionaries.

In this subsection, we will discuss monitors that realize priority queues in terms of priority
queues. We will show that there is a checker which reports errors with delay. The checker has
constant overhead. We also show that any checker which catches errors with no delay, must incur
logarithmic amortized cost per operation.

A Checker with Delay:.We review a construction given in [FM99]; [MN99, Section 5.5.3] con-
tains all implementation details. There is a simple but inefficient way for monitoring a priority
queue. After everyD.findminoperation, we simply check that the reported priority is thesmall-
est of all priorities in the queue. This solution does the jobbut defeats the purpose as it adds
linear overhead. We will reduce the overhead at the expense of catching errors delayed. When

78

L

Part

S

D

nil

Figure 20: In the top part of the figure the items in a priority queueD are shown as circles in thexy-plane. The
x-coordinate corresponds to the insertion time of the item and they-coordinate corresponds to its priority. The lower
bounds for the priorities are indicated as heavy horizontallines. The lower bound for the last two items is−∞. The
lower part of the figure shows the data structures of the checker. The listL has one item for each item inD, the list
Shas one item for each step, and the union-find data structurePart connects each item inL to the step to which it
belongs. The blocks ofPart are indicated as ellipses. Each element inSknows the lower bound associated with the
step and the last item inL belonging to the step.

a D.findminoperation is performed, the checker will record that all items currently in the queue
must have a priority at least as large as the priority reported. The actual checking is done later.

Consider Figure20. The top part of this figure shows the items in a priority queuefrom left
to right in the order of their insertion time. They-coordinate indicates the priority. With each
item of the priority queue we have an associated lower bound.The lower boundfor an item is
the maximal priority reported by anyD.findminoperation that took place after the insertion of
the item.D operates correctly if the priority of any item is at least as large as its lower bound.
We can therefore checkD by comparing the priority of an item with its lower bound whenthe
item is deleted fromD.

How can we efficiently maintain the lower bounds of the items in the queue? We observe that
lower bounds are monotonically decreasing from left to right and hence have the staircase-like
form shown in Figure20. We call a maximal segment of items with the same lower bound a
step. How does the system of lower bounds evolve over time? When a new item is added to the
queue its associated lower bound is−∞ and when aD.findminoperation reports a priorityp all
lower bounds smaller thanp are increased top. In other words, all steps of value at mostp are
removed and replaced by a single step of valuep. Since the staircase of lower bounds is falling
from left to right this amounts to replacing a certain numberof steps at the end of the staircase
by a single step, see Figure21.

We can now describe the details of the checker. It keeps a linear listL of items, one for each
item in D. As in Section12.1, the items inL and the items inD are cross-linked. The listL is
ordered by insertion time. The checker also keeps a listSof steps and a union-find data structure

79

p

Figure 21: Updating the staircase of lower bounds after reporting a priority of p. All steps whose associated lower
bound is at mostp are replaced by a single step whose associated lower bound isp.

Part for the items inL. The blocks ofPart comprise the items in a step and a block has a pointer
to the element inSrepresenting the step. An item inSstores the lower bound associated with the
step and a pointer to the last element inL belonging to the step, see Figure20.

When an element(x, i) is inserted into the queue, the checker forwards the insertion to D,
adds an item toL, cross-links the two new items, and adds the new item inL to the step with
lower bound−∞. If this step does not exist, it is created.

When an element is deleted, the checker deletes the corresponding item inL, uses the union-
find data structure to find the step to which the item belongs, and verifies that the priority of the
item is at least as large as the lower bound stored with the step.

When aD.findmin() reports a priorityp, all steps with lower bound at mostp are united into
a single step. The relevant steps are found by scanningSfrom its right end. The union-operations
are initiated by going from the element inS to the last item inL that belongs to the block and
then calling the union operation of the union-find data structure.

A Lower Bound for On-Line Checkers:.We prove that any checkerC that catches errors with no
delay, must incur logarithmic amortized cost per operationin the worst case. We will use the pair
C+D to sortn elements by performing the sequence

insert(a1); . . . ; insert(an);delmin(); . . . ;delmin().

The pairC+D must performΩ(nlogn) comparisons to execute this sequence correctly. We will
show thatC must performΩ(nlogn) comparisons. We use the lower bound technique developed
in [BCR96]. We make the following assumptions about the checker: it cannot invent elements,
i.e., only arguments of insert operations can be passed on tothe data structure for insertion.
However, not all arguments need to be passed on. Similarly, not all deletions need to be passed
on. In this way the set of elements stored inD is a subset of the elements inserted by the
environment. We useSD to denote the elements stored inD andSA to denote the elements stored
in A. The lower bound is through an adversary argument. The adversary fixes

1. the outcome of the comparisons made byC. We use<C for the partial order determined
byC.

2. the outcome ofD.delmin() operations.

Of course, any answer of the adversary must be consistent with previous answers. The checker
interacts with the environment and withD. It has the following obligations.

80

1. With respect to the environment, it must implement a priority queue, i.e., everydelmin()-
operation must return a handle to the minimum element inSA.

2. With respect to the data structure, it must catch errors immediately, i.e., before the next
interaction with the environment. In other words, after every D.delmin()-operation,C
performs some comparisons and then either accepts or rejects the answer ofD. Let m be
the priority returned by theD.delmin()-operation. Ifm is the minimum ofSD, C must
accept the answer, and ifm is not the minimum ofSD, C must reject the answer.

There are two situations, whereC can readily decide. Ifm is the minimum ofSD under<C,
C may accept, and ifm is not a minimal element ofSD under<C, C must reject. We next show
thatC cannot decide with less knowledge.

Lemma 23. When C accepts the answer m of a D.delmin(), m must be the minimum of SD with
respect to<C, and if C rejects, m must not be a minimal element of SD with respect to<C.

Proof: Consider the first operationD.delmin(), where the claim is false. ThenC accepted the
outcomes of all previousD.delmin()-operations and hence their answers were determined by<C

at the time of their acceptance and hence by the current<C.
Assume now thatm is a minimal element ofSD with respect to<C, but is not a minimum.

Then there are linear extensions<1 and <2 of <C, one havingm as the minimum and one
not havingm as the minimum. Consider now the execution of our algorithm on <1 and<2.
Since both orders extend<C, the answers of all previous operationsD.delmin() are still correct.
However, under<1, the answer to the currentD.delmin()-operation is correct and under<2, the
answer is incorrect. Thus<C does not contain sufficient information forC to decide. �

The interactions with the environment are completely determined by the sequence of inserts,
deletes, and the comparisons made byC. In particular, whenever an environment-delmin() is
answered,<C must determine a unique minimal element inSA. However, which comparisons are
made byC depends on the outcome of theD.delmin() operations. It is last sentence which forces
us to continue the argument. It is conceivable, that the outcome of theD.delmin() operations
guides the checker to the right comparisons. This was the case in the subsection12.1where the
checker needed only two comparisons to insert a new element at the right position. The interface
of priority queue is too narrow to support a similar approach.

We next define the strategy of the adversary in a way similar to[BCR96]. In [BCR96], the
adversary only needs to fix the outcome of comparisons made byC. It now also has to fix the
outcome ofD.delmin() operations. Since the adversary needs to stay consistent with itself, this
will fix outcomes of future comparisons made byC. The strategy of [BCR96] is as follows: The
elements sit in the nodes of a binary tree; we usev(x) to denote the node containingx andℓ(x)
to denote the depth of the nodev(x). The number of comparisons made byC will be Ω(∑xℓ(x)).
We say that an elementx sits left of an elementy if and only if there is a nodev such thatx sits
in a left descendant ofv andy sits in a right descendant ofv. There are three possibilities for
two elementsx andy. Eitherx sits left ofy or x sits right ofy or x andy sit on a common path,

81

i.e., in nodes where one is an ancestor of the other. The partial order on the elements as follows:
x is smaller thany if and only if x sits left of y. If x andy sit on a common path, the order is
still undecided. All linear orders compatible with the current partial order can be obtained by
moving elements down the tree until no two elements sit on a common path. An insert puts the
new element into the root.

When elementsx andy are compared and

• x andy sit in the same node, we move one to the left and one to the right

• x sits in a proper ancestor ofy, x is moved to the child which is not an ancestor ofy,

• x andy sit in nodes of which neither is an ancestor of the other, no move is required.

Then the outcome of the comparison is as defined above.

Lemma 24. If x < y follows from the answers of the adversary then x sits left ofy.

Proof: If x < y follows from the answers of the adversary, there are elementsz0,z1, . . . ,zk such
thatx = z0, y = zk, andzi was declared smaller thanzi+1 by the adversary for 0≤ i < k. After
zi was declared smaller thanzi+1, it sits left ofzi+1 in the tree. As elements only move down, it
stays to the left ofzi+1. Thusx sits left ofy in the tree. �

How does the adversary fix the outcome of aD.delmin() operation? By Lemma23, the only
logical constraint is that the outcome must be consistent with <C. Consider the elements inSD

and how they are distributed over the tree. IfSD = /0, no action is required. Otherwise, we define
a tree-pathp and call it theD-min-path. It starts in the root. Assume that we have extendedp up
to a nodev. If no elements inSD are stored in proper descendants ofv, the path ends. If some are
stored in the left subtree, we proceed to the left child, otherwise, we proceed to the right child.
The elements ofSD lying on p are exactly the elements inSD which are minimal elements with
respect to<C. Observe that the D-min-path changes over time. Lemma23tells us that whenever
C accepts the outcome of aD.delmin()-operation, the D-min-path must contain a single element
in SD.

The adversary fixes the outcome ofD.delmin() as follows: it returns an elementm in SD in
the highest (= closest to the root) non-empty node ofp for which the left child is not onp; non-
empty means that the node contains an element ofSD. This node exists since the last node ofp is
a non-empty node for which the left child is not onp. If m is the only element ofSD stored onp,
the adversary is done. Otherwise, it implicitly movesm to the left child ofv and all elements of
SD different fromm sitting in ancestors ofv and includingv to their right child. We say that the
elements are moved implicitly, because these moves are hidden fromC. The adversary commits
to these moves but it does not make them yet. It makes them whenthe elements are involved in
a comparison explicitly asked for byC. Let R be the set of elements moved in this way. When
an element inR is involved in the next comparison, the adversary actually performs the hidden
move and then follows the Brodal-et-al strategy. Letk = |R| ≥ 1. We will show thatC has to
makeΩ(k) comparisons before it can accept the outcome ofD.delmin().

82

Consider the comparisons made byC between the call toD.delmin() and the commit to the
answerm. By Lemma23, m must be the minimum ofSD under<C whenC acceptsm. Thus at
the time of acceptance , theD-min-path contains a single element. We now distinguish cases:
R\m is non-empty orR= {m}. In the former case, assume that there is an element inR\m that
is not involved in a comparison made byC before the time of commitment. Then this elements
still sits in an ancestor of the node containingm at the time of commitment and hence its order
with respect tom is still open. ThusC cannot commit, a contradiction. We conclude that if the
adversary performsk hidden moves, we can charge them to at least⌈(k− 1)/2⌉ comparisons
made byC made before it acceptsm.

If k = 1, we have to argue differently. In this case, no other element in SD is stored in an
ancestor of or at the node containingm. However, in this case, theD-min-path extends beyond
the node containingm (otherwise, we would be in the situation that the D-min-pathcontains a
single element ofSD) and henceC must perform a comparison involvingm before it can accept
m.

In this way, we chargeO(1) moves to a single comparison. More precisely, we charge at most
five moves to a single comparison. The worst case occurs whenk = 3. The adversary performs
three hidden moves,C performs one comparison and this results in two more moves.

It is now easy to complete the lower bound. We consider the sequence

insert(a1); . . . ; insert(an);delmin(); . . . ;delmin();

This sequence sorts. When a delmin is answered, the element returned must be the unique
minimum on the A-minimum path (this is the path containing the potential minima under<C in
SA). Thus there is no element stored in an ancestor of the element returned. By the definition of
the adversary strategy, this is also true at the end of operation sequence. Letℓi be the depth of the
element returned by thei-th delmin-operation at the end of the execution. Then14 ∑ℓi ≥ nlogn.
Since any comparison made byC increases the sum∑i ℓi by at most five, we conclude thatC
performs(1/5)nlogn comparisons.

Theorem 15. In the comparison model, any checker for priority queues which reports errors
immediately, must perform(1/5)nlogn comparisons.

13. Teaching Algorithms

The concept of certifying algorithm is easily incorporatedinto basic and advanced algorithm
courses. We believe that it must be incorporated. In our own teaching we have used the following
approach.

14Let v1, . . . , vn ben nodes in an infinite binary tree, no two of which are ancestorsof each other and letℓi be
the depth ofvi . Then∑ℓi ≥ nlogn as an easy induction shows. The claim is clear forn = 1. Assume now that
n > 1 and thatn1 andn2 elements lie in the left and right subtree, respectively. Then∑1≤i≤n1

(ℓi−1)≥ n1 logn1 and
∑n1+1≤i≤n(ℓi−1)≥ n2 logn2 by induction hypothesis. Thus

∑
i

ℓi ≥ n+n1 logn1 +n2 logn2 = nlogn+n(1+
n1

n
log

n1

n
+

n2

n
log

n2

n
)≥ nlogn.

83

1. We present a certifying algorithm whenever possible. If no certifying algorithm is known,
we present its design as a research problem. If only an inefficient certifying algorithm is
known, we present it together with the more efficient non-certifying algorithm and present
the design of an efficient certifying algorithm as a researchproblem.

2. When we discuss the first certifying algorithm, we spend time on motivation (Section3)
and usefulness (Section7).

3. If the theme of integer arithmetic fits into the course, we explain that checking a divi-
sion through multiplication and checking a multiplicationthrough the method of “casting
out nines” (see Subsection10.2) are ancient examples of certifying the correctness of a
computation.

4. If the computation of greatest common divisors fits into the course, we treat the basic
and the extended Euclidean algorithm as examples of a non-certifying and a certifying
algorithm (see Subsection2.3).

5. In some advanced courses, we have discussed the theory of certifying algorithms (Sec-
tion 5) and/or general approaches to certifying algorithms (Section 8).

6. In courses on linear programming, duality is discussed asa general principle of certifica-
tion (Subsection8.2).

As course material, we have used draft versions of this article. In the future, we will use this
article. Also, the recent textbook by Mehlhorn and Sanders [MS08] uses the concept of certifying
algorithms.

14. Future Work

Open problems are numerous. Any algorithmic problem for which there is no certifying
algorithm or only a certifying algorithm whose running timeis of higher order than the known
best non-certifying algorithm is an open problem. Our personal favorites are 3-connectivity of
graphs (see Section5.4), arrangements of algebraic curves, shortest paths in the plane or in space
in the presence of obstacles, and the algebraic number packages in LEDA and CGAL.

We would also like to see advances in formal verification of certifying algorithms. For most
algorithms mentioned in this paper, it should be feasible togive a formal proof for the witness
property and for the correctness of the checking program. Eyad Alkassar, Christine Rizkallah,
Norbert Schirmer, and the second author have recently givensuch proofs for the maximum car-
dinality matching problem (see Section2.5) in Isabelle [Isa] and VCC [VCC], respectively.

Also, our definition of certifying algorithm should be reconsidered. We mentioned that some
fellow researchers feel that Theorems5 and 7 should not hold. The task is then to find an
appropriate restrictive definition of certifying algorithm.

84

15. Conclusions

Certifying algorithms are a prefered kind of algorithm. They prove their work and they are
easier to implement reliably. Their wide-spread use would greatly enhance the reliability of
algorithmic software.

16. Acknowledgements

We want to thank many colleages for discussions about aspects of this paper, in particu-
lar, Ernst Althaus, Peter van Emde Boas, Harry Buhmann, ArnoEigenwillig, Uli Finkler, Ste-
fan Funke, Dieter Kratsch, Franco Preparata, Peter Sanders, Elmar Schömer, Raimund Seidel,
Jeremy Spinrad, and Christian Uhrig.

References

[ABC+09] D. Applegate, B. Bixby, V. Chvatal, W. Cook, D. G. Espinoza, M. Goycoolea, and
K. Helsgaun. Certification of an optimal TSP tour through 85,900 cities.Operations
Research Letters, 37(1):11 – 15, 2009.

[ABCC06] D. Applegate, B. Bixby, V. Chvatal, and W. Cook.The Traveling Salesman Prob-
lem: A Computational Study. Princeton University Press, 2006.

[ACDE07] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G. Espinoza. Ex-
act solutions to linear programming problems.Operations Research Letters,
35(6):693–699, 2007.

[AIJ+09] E. Amaldi, C. Iuliano, T. Jurkiewicz, K. Mehlhorn, and R.Rizzi. Breaking through
theO(m2n) Barrier for Minimum Cycle Bases. InESA 2009, volume 5757 ofLNCS,
pages 301–312, 2009.

[AL94] N.M. Amato and M.C. Loui. Checking linked data structures. InProceedings of
the 24th Annual International Symposium on Fault-TolerantComputing (FTCS’94),
pages 164–173, 1994.

[AM99] S. Arikati and K. Mehlhorn. A Correctness Certificatefor the Stoer-Wagner Mincut
Algorithm. Information Processing Letters, 70:251–254, 1999.

[BCR96] G. Brodal, S. Chaudhuri, and J. Radhakrishnan. The randomized complexity of
maintaining the minimum.Nordic Journal of Computing, 3(4):337–351, 1996.

[BDH96] C. Barber, D. Dobkin, and H. Hudhanpaa. The quickhull program for convex hulls.
ACM Transactions on Mathematical Software, 22:469–483, 1996.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories.Algorithmica, 12((2/3)):225–244, 1994.

85

[Ber05] Sergey Bereg. Certifying and constructing minimally rigid graphs in the plane.
In SCG ’05: Proceedings of the twenty-first annual symposium onComputational
geometry, pages 73–80, New York, NY, USA, 2005. ACM.

[BK89] M. Blum and S. Kannan. Designing programs that check their work. InProceedings
of the 21th Annual ACM Symposium on Theory of Computing (STOC’89), pages
86–97, 1989.

[BK95] M. Blum and S. Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995. preliminary version in STOC’89.

[BKM07] Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors. Graph-Theoretic
Concepts in Computer Science, 33rd International Workshop, WG 2007, Dornburg,
Germany, June 21-23, 2007. Revised Papers, volume 4769 ofLecture Notes in
Computer Science. Springer, 2007.

[BL76] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity usingPQ-tree algorithms.Journal of Computer and
System Sciences, 13:335–379, 1976.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. InProceedings of the 22nd Annual ACM Symposium on
Theory of Computing (STOC’90), pages 73–83, 1990.

[Blu93] Manuel Blum. Program result checking: A new approach to making programs more
reliable. InICALP, pages 1–14, 1993.

[BMh94] C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeneracy in Geometric Com-
putations. InProceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’94), pages 16–23, 1994.

[BS94] J.D. Bright and G.F. Sullivan. Checking mergeable priority queues. InProceed-
ings of the 24th Annual International Symposium on Fault-Tolerant Computing
(FTCS’94), pages 144–153, Los Alamitos, CA, USA, June 1994. IEEE Computer
Society Press.

[BS95] J.D. Bright and G.F. Sullivan. On-line error monitoring for several data structures.
In Proceedings of the 25th Annual International Symposium on Fault-Tolerant
Computing (FTCS’95), pages 392–401, Pasadena, California, 1995.

[BSM95] J.D. Bright, G.F. Sullivan, and G.M. Masson. Checking the integrity of trees. In
Proceedings of the 25th Annual International Symposium on Fault-Tolerant Com-
puting (FTCS’95), pages 402–413, Pasadena, California, 1995.

[BSM97] J.D. Bright, G.F. Sullivan, and G.M. Masson. A formally verified sorting certifier.
IEEE Transactions on Computers, 46(12):1304–1312, 1997.

86

[BW94] Manuel Blum and Hal Wasserman. Program result-checking: A theory of testing
meets a test of theory. InFOCS, pages 382–392, 1994.

[BW96] M. Blum and H. Wasserman. Reflections on the Pentium division bug.IEEE Trans-
action on Computing, 45(4):385–393, 1996.

[CCL+05] Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul D. Seymour, and
Kristina Vuskovic. Recognizing Berge graphs.Combinatorica, 25(2):143–186,
2005.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, andA. Schrijver.Combinatorial
Optimization. John Wiley & Sons, Inc, 1998.

[CGA] CGAL (Computational Geometry Algorithms Library).www.cgal.org.

[Chv93] V. Chvatal.Linear Programming. Freeman, 93.

[CK70] D. R. Chand and S. S. Kanpur. An algorithm for convex polytopes.J. ACM, 17:78–
86, 1970.

[CMPS03] Arjeh M. Cohen, Scott H. Murray, Martin Pollet, andVolker Sorge. Certifying
solutions to permutation group problems. In Franz Baader, editor, CADE, volume
2741 ofLecture Notes in Computer Science, pages 258–273. Springer, 2003.

[CMS93] K. Clarkson, K. Mehlhorn, and R. Seidel. Four Results on Randomized Incremental
Constructions. Computational Geometry: Theory and Applications, 3:185–212,
1993.

[CP06] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate for
directed cograph.Discrete Appl. Math., 154(12):1722–1741, 2006.

[CPL] CPLEX. www.cplex.com.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong
perfect graph theorem.Ann. of Math. (2), 164(1):51–229, 2006.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random sampling in computational
geometry, II.Journal of Discrete and Computational Geometry, 4:387–421, 1989.

[CW82] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multi-
plication. SIAM J. Comput., 11:472–492, 1982.

[DFK+03] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Schömer,
R. Schulte, and D. Weber. Certifying and Repairing Solutions to Large LPs, How
Good are LP-solvers?. InSODA, pages 255–256, 2003.

87

www.cgal.org
www.cplex.com

[DLPT98] O. Devillers, G. Liotta, F. Preparata, and R. Tamassia. Checking the convexity
of polytopes and the planarity of subdivisions.CGTA: Computational Geometry:
Theory and Applications, 11, 1998.

[dP95] J.C. de Pina.Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands, 1995.

[Dus98] Pierre Dusart.Autour de la fonction qui compte le nombre de nombres premiers.
PhD thesis, Universit’e de Limoges, Limoges, France, 1998.

[Edm65a] J. Edmonds. Maximum matching and a polyhedron with0,1 - vertices.Journal of
Research of the National Bureau of Standards, 69B:125–130, 1965.

[Edm65b] J. Edmonds. Paths, trees, and flowers.Canadian Journal on Mathematics, pages
449–467, 1965.

[EMS10] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. A Linear Time Certifying Triconnec-
tivity Algorithm for Hamiltonian Graphs. March 2010.

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique
in a semirandom graph.Random Struct. Algorithms, 16(2):195–208, 2000.

[Flo67] R. Floyd. Assigning meaning to programs. In J.T. Schwarz, editor,Mathematical
Aspects of Computer Science, pages 19–32. AMS, 1967.

[FM99] U. Finkler and K. Mehlhorn. Checking Priority Queues. In Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 901–
902, 1999.

[Fre77] R. Freiwalds. Probabilistic machines can use less running time. InInformation
Processing 77, Proceedings of IFIP Congress 77, pages 839–842, 1977.

[GM00] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
Graph Drawing, LNCS, pages 77–90, 2000.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems.SIAM J. Comput., 18(1):186–208, 1989.

[Gol80] M.C. Golumbic.Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

[Gon08] G. Gonthier. Formal proof–the Four-Color theorem.Notices of the American Math-
ematical Society, 55(11), 2008.

[Hel06] K. Helsgaun. An effective implementation ofK-opt moves for the Lin-Kernighan
TSP heuristic. Technical Report 109, Roskilde University,2006. Writings in Com-
puter Science.

88

[Her94] J. Herzberger, editor.Topics in Validated Computations – Studies in Computational
Mathematics. Elsevier, 1994.

[HH05] Pavol Hell and Jing Huang. Certifying lexbfs recognition algorithms for proper
interval graphs and proper interval bigraphs.SIAM J. Discret. Math., 18(3):554–
570, 2005.

[HK70] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning
trees.Operations Research, 18:1138–1162, 1970.

[HK71] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning
trees, part II.Mathematical Programming, 1:6–25, 1971.

[HK07] Pinar Heggernes and Dieter Kratsch. Linear-time certifying recognition algorithms
and forbidden induced subgraphs.Nordic J. of Computing, 14(1):87–108, 2007.

[HL04] D. Halperin and E. Leiserowitz. Controlled perturbation for arrangements of circles.
International Journal of Computational Geometry and Applications, 14(4):277–
310, 2004. preliminary version in SoCG 2003.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.Communications
of the ACM, 12:576–585, 1969.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

[Hor87] J.D. Horton. A polynomial-time algorithm to find theshortest cycle basis of a graph.
SICOMP, 16:358–366, 1987.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal of Computing, 2(3):135–158, 1973.

[HT74] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,
21:549–568, 1974.

[Isa] Isabelle theorem prover.http://isabelle.in.tum.de/.

[JP93] Michael Jünger and William R. Pulleyblank. Geometric duality and combinatorial
optimization. In S.D. Chatterji, B. Fuchssteiner, U. Kulisch, and R.Liedl, editors,
JahrbuchÜberblicke Mathematik, pages 1–24. Vieweg, 1993.

[Kar90] A. Karabeg. Classification and detection of obstructions to planarity.Linear and
Multilinear Algebra, 26:15–38, 1990.

[KLM +09] T. Kavitha, Ch. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and
K. Zweig. Cycle Bases in Graphs: Characterization, Algorithms, Complexity, and
Applications.Computer Science Review, 3:199–243, 2009.

89

http://isabelle.in.tum.de/

[KMMS06] D. Kratsch, R. McConnell, K. Mehlhorn, and J. Spinrad. Certifying Algorithms
for Recognizing Interval Graphs and Permutation Graphs.SIAM J. Comput.,
36(2):326–353, 2006. preliminary version in SODA 2003, pages 158–167.

[KMP+08] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom Examples
of Robustness Problems in Geometric Computations.Computational Geometry:
Theory and Applications (CGTA), 40:61–78, 2008. a preliminary version appeared
in ESA 2004, LNCS 3221, pages 702 – 713.

[KN06] Haim Kaplan and Yahav Nussbaum. Certifying algorithms for recognizing proper
circular-arc graphs and unit circular-arc graphs. In FedorV. Fomin, editor,WG, vol-
ume 4271 ofLecture Notes in Computer Science, pages 289–300. Springer, 2006.

[Kri02] M. Kriesell. A survey on contractible edges in graphs of a prescribed vertex con-
nectivity. Graphs and Combinatorics, pages 1–33, 2002.

[KS93] Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying
matrix products using o(n2) time and log2n + o(1) random bits. Inf. Process. Lett.,
45(2):107–110, 1993.

[KS96] D.R. Karger and C. Stein. A new approach to the minimumcut problem.Journal
of the ACM, 43(4):601–640, 1996.

[KT05] J. Kleinberg and E. Tardos.Algorithm Design. Addison Wesley, 2005.

[LdR07] Van Bang Le and H. N. de Ridder. Characterisations and linear-time recognition of
probe cographs. In Brandstädt et al. [BKM07], pages 226–237.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In P. Rosenstiehl, editor,Theory of Graphs, International Symposium, Rome, pages
215–232, 1967.

[LED] LEDA (Library of Efficient Data Types and Algorithms).
www.algorithmic-solutions.com.

[LLRKS85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, andD. B. Shmoys.The Traveling
Salesman Problem. Wiley, 1985.

[LSS07] Min Chih Lin, Francisco J. Soulignac, and Jayme LuizSzwarcfiter. Proper helly
circular-arc graphs. In Brandstädt et al. [BKM07], pages 248–257.

[McC04] Ross M. McConnell. A certifying algorithm for the consecutive-ones property. In
J. Ian Munro, editor,SODA, pages 768–777. SIAM, 2004.

[Mei05] Daniel Meister. Recognition and computation of minimal triangulations for at-
free claw-free and co-comparability graphs.Discrete Appl. Math., 146(3):193–218,
2005.

90

www.algorithmic-solutions.com

[Met97] M. Metzler. Ergebnisüberprüfung bei Graphenalgorithmen. Master’s thesis, Fach-
bereich Informatik, Universität des Saarlandes, Saarbr¨ucken, 1997.

[MMN +98] K. Mehlhorn, M. Müller, S. Näher, S. S. Schirra, M. Seel, C. Uhrig, and J. Ziegler.
A computational basis for higher-dimensional computational geometry and its ap-
plications.Computational Geometry: Theory and Applications, 10:289–303, 1998.

[MN89] K. Mehlhorn and S. Näher. LEDA: A Library of EfficientData Types and Algo-
rithms. In MFCS’89, volume 379 of Lecture Notes in Computer Science, pages
88–106, 1989.

[MN95] K. Mehlhorn and S. Näher. LEDA, a Platform for Combinatorial and Geometric
Computing.Communications of the ACM, 38:96–102, 1995.

[MN98] K. Mehlhorn and S. Näher. From algorithms to workingprograms: On the use
of program checking in LEDA. InMFCS’98, volume 1450 of Lecture Notes in
Computer Science, pages 84–93, 1998.

[MN99] K. Mehlhorn and S. Näher.The LEDA Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[MNS+99] Kurt Mehlhorn, Stefan Näher, Michael Seel, Raimund Seidel, Thomas Schilz, Ste-
fan Schirra, and Christian Uhrig. Checking geometric programs or verification of
geometric structures.Computational Geometry, 12(1-2):85–103, 1999. preliminary
version in SoCG 96.

[MNU97] K. Mehlhorn, S. Näher, and C. Uhrig. The LEDA Platform for Combinatorial
and Geometric Computing. InProceedings of the 24th International Colloquium
on Automata, Languages and Programming (ICALP’97), volume 1256 of Lecture
Notes in Computer Science, pages 7–16, 1997.

[Mos09] Robin A. Moser. A constructive proof of the Lovasz local lemma. InSTOC ’09:
Proceedings of the fourty-first annual ACM symposium on Theory of computing,
page to appear, New York, NY, USA, 2009. ACM.

[MR92] G. L. Miller and V. Ramachandran. A new graph triconnectivity algorithm and its
parallelization.Combinatorica, 12(1):53–76, 1992.

[MS08] K. Mehlhorn and P. Sanders.Algorithms and Data Structures: The Basic Toolbox.
Springer, 2008. 300 pages.

[MZ05] J. Strother Moore and Qiang Zhang. Proof pearl: Dijkstra’s shortest path algorithm
verified with acl2. In Joe Hurd and Thomas F. Melham, editors,Theorem Proving
in Higher Order Logics, volume 3603 ofLecture Notes in Computer Science, pages
373–384. Springer, 2005.

91

[Nec97] George C. Necula. Proof-carrying code. InPOPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programminglanguages,
pages 106–119. ACM Press, 1997.

[NI92] H. Nagamochi and T. Ibaraki. A linear-time algorithmfor finding a sparsek-
connected spanning subgraph of ak-connected graph.Algorithmica, 7:583–596,
1992.

[NL96] G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In
SIGOPS Operating Systems Review, volume 30, pages 229–243, 1996.

[NM90] S. Näher and K. Mehlhorn. LEDA: A Library of EfficientData Types and Algo-
rithms. In ICALP’90, volume 443 of Lecture Notes in Computer Science, pages
1–5. Springer, 1990.

[NP07] Stavros D. Nikolopoulos and Leonidas Palios. An O(nm)-time certifying algorithm
for recognizing hhd-free graphs. In Franco P. Preparata andQizhi Fang, editors,
FAW, volume 4613 ofLecture Notes in Computer Science, pages 281–292. Springer,
2007.

[PS85] F.P. Preparata and M.I. Shamos.Computational Geometry: An Introduction.
Springer, 1985.

[RTL76] D. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination
on graphs.SIAM J. Comput., 5:266–283, 1976.

[Rum01] S. Rump. Self-validating methods.Linear Algebra and its Applications (LAA),
324:3–13, 2001.

[Ryb09] Konstantin A. Rybnikov. An efficient local approachto convexity testing of
piecewise-linear hypersurfaces.Comput. Geom., 42(2):147–172, 2009.

[Sch86] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1986.

[Sch03] A. Schrijver.Combinatorial Optimization (3 Volumes). Springer Verlag, 2003.

[Sch09] P. Schweitzer.Problems of unknown complexity : graph isomorphism and Ramsey
theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany,
July 2009.

[Sch10] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In27th
International Symposium on Theoretical Aspects of Computer Science (STACS’10),
Nancy, France, 2010.http://page.mi.fu-berlin.de/jeschmid/pub.

[Sei86] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per
face. InProceedings of the 18th Annual ACM Symposium on Theory Computing
(STOC’86), pages 404–413, 1986.

92

http://page.mi.fu-berlin.de/jeschmid/pub

[SM90] G.F. Sullivan and G.M. Masson. Using certification trails to achieve software fault
tolerance. In Brian Randell, editor,Proceedings of the 20th Annual International
Symposium on Fault-Tolerant Computing (FTCS ’90), pages 423–433. IEEE, 1990.

[SM91] G.F. Sullivan and G.M. Masson. Certification trails for data structures. InPro-
ceedings of the 21st Annual International Symposium on Fault-Tolerant Comput-
ing(FTCS’91), pages 240–247, Montreal, Quebec, Canada, 1991. IEEE Computer
Society Press.

[SoP] SoPlex.www.zib.de/Optimization/Software/Soplex.

[SW97] M. Stoer and F. Wagner. A simple min-cut algorithm.Journal of the ACM,
44(4):585–591, July 1997.

[SWM95] G.F. Sullivan, D.S. Wilson, and G.M. Masson. Certification of computational re-
sults. IEEE Transactions on Computers, 44(7):833–847, 1995.

[TY85] E. E. Tarjan and M. Yannakakis. Addendum: Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs.SIAM Journal on Computing, 14:254–255, 1985.

[VCC] VCC, a mechanical verifier for concurrent C programs.
http://vcc.codeplex.com/.

[Ver] Verisoft XT. http://www.verisoft.de/index_en.html.

[WB97] Hal Wasserman and Manuel Blum. Software reliabilityvia run-time result-
checking.J. ACM, 44(6):826–849, 1997. preliminary version in FOCS’94.

[WC81] M.N. Wegman and J.L. Carter. New hash functions and their use in authentication
and set equality.Journal of Computer and System Sciences, 22(3):265–279, june
1981.

[Wil84] S.G. Williamson. Depth-First Search and Kuratowski Subgraphs.Journal of the
ACM, 31(4):681–693, 1984.

[Yap03] C.-K. Yap. Robust geometric computation. In J.E. Goodman and J. O’Rourke, ed-
itors,Handbook of Discrete and Computational Geometry, chapter 41. CRC Press
LLC, Boca Raton, FL, 2nd edition, 2003.

[Zel05] A. Zeller. WHY PROGRAMS FAIL: A Guide to Systematic Debugging. Morgan-
Kaufmann, 2005.

93

www.zib.de/Optimization/Software/Soplex
http://vcc.codeplex.com/
http://www.verisoft.de/index_en.html

	Introduction
	First Examples
	Tutorial Example 1: Testing Whether a Graph is Bipartite
	Tutorial Example 2: The Connected Components of an Undirected Graph
	Tutorial Example 3: Greatest Common Divisor
	Tutorial Example 4: Shortest Path Trees
	Example: Maximum Cardinality Matchings in Graphs
	Case Study: The LEDA Planar Embedding Package

	Examples of Program Failures
	Relation to Extant Work
	Definitions and Formal Framework
	Strongly Certifying Algorithms
	Certifying Algorithms
	Weakly Certifying Algorithms
	Efficiency
	Simplicity and Checkability
	Deterministic Programs with Trivial Preconditions
	Non-Trivial Preconditions
	An Objection

	Checkers
	The Pragmatic Approach
	Manipulation of the Input
	Formal Verification of Checkers

	Advantages of Certifying Algorithms
	General Techniques
	Reduction
	An Example
	The General Approach

	Linear Programming Duality
	Characterization Theorems
	Approximation Algorithms and Problem Relaxation
	Composition of Programs

	Further Examples
	Convexity of Higher-dimensional Polyhedra and Convex Hulls
	Solving Linear Systems of Equations
	NP-Complete Problems
	Maximum Weight Independent Sets in Interval Graphs
	String Matching
	Chordal Graphs
	Numerical Algorithms
	Guide to Literature

	Randomization
	Monte Carlo Algorithms resist Deterministic Certification
	Integer Arithmetic
	Matrix Operations
	Cycle Bases
	Definitions

	Certification and Verification
	Reactive Programs and Data Structures
	The Dictionary Problem
	Priority Queues

	Teaching Algorithms
	Future Work
	Conclusions
	Acknowledgements

