
Linear-time recognition of circular-arc graphs

Ross M. McConnell
Department of Computer Science and Engineering,

University of Colorado at Denver,
Denver, CO 80217-3364 USA,

rmcconne@carbon.cudenver.edu.

Abstract

A graph G is a circular-arc graph if it is the in-
tersection graph of a set of arcs on a circle. That is,
there is one arc for each vertex of G, and two vertices
are adjacent in G if the corresponding arcs intersect.
We give a linear time bound for recognizing this class
of graphs. When G is a member of the class, the al-
gorithm gives a certificate in the form of a set of arcs
that realize it.

1. Introduction

The intersection graph of a family of n sets is the
graph where the vertices are the sets, and the edges
are the pairs of sets that intersect. Every graph is
the intersection graph of some family of sets [13]. An
graph is an interval graph if there is a way to order
the universe from which the sets are drawn so that each
set is consecutive. Equivalently, a graph is an interval
graph if it is the intersection graph of a finite set of
intervals on a line. A graph is a circular-arc graph
if it is the intersection graph of a finite set of arcs on
a circle. (See Figure 1.) An interval graph is a special
case of a circular-arc graph; it is a circular-arc graph
that can be represented with arcs that do not cover the
entire circle.

Interval graphs and circular-arc graphs arise in
scheduling problems and other combinatorial problems.
Before the structure of DNA was well-understood, Sey-
mour Benzer [1] was able to show that the set of in-
tersections of a large number of fragments of genetic
material in a virus were an interval graph. This pro-
vided strong evidence that genetic information was ar-
ranged inside a linear structure, which we now know to
be true. Benzer earned the Nobel Prize partly for this
work.

a

b

c

d

e

f

a

b c

d

e

f

a

b c d gf

e

a

b c

d e

f g

Figure 1. A circular-arc graph is the intersec-
tion graph of a set of arcs on the circle, and
an interval graph is the intersection graph of
a set of intervals on the line.

Being able to determine whether a graph is an in-
terval graph or circular-arc graph constitutes recog-
nition of these graph classes. However, having a
representation of a graph with intervals or arcs can
be helpful in solving combinatorial problems on the
graph, such as isomorphism testing and finding maxi-
mum independent sets and cliques [4, 11]. Therefore, a
stronger result than just recognizing the class is being
able to produce the representation whenever a graph is
a member of the class.

Fulkerson and Gross [8] gave an O(n4) algorithm
for solving this problem on interval graphs. Booth
and Lueker later improved this to linear-time [3]. Un-
til now, a linear-time bound for circular-arc graphs
has been elusive. It was initially conjectured by
Booth [2] that recognition of circular-arc graphs was
NP-complete. Tucker disproved this with an O(n3) al-
gorithm [22]. Hsu improved this to O(nm), where m is
the number of edges [11], and Eschen and Spinrad fur-

ther improved this to O(n2) [7]. We give an O(n+m)
bound.

One reason that the problem is harder on circular-
arc graphs is that there are two ways to travel between
a pair of points on a circle, and only one on a line. This
introduces the need for an algorithm to make choices
that are not required in the interval-graph recogni-
tion problem. Also, in an interval graph the maxi-
mal cliques correspond to regions of maximal overlap
among the intervals, and there are therefore O(n) max-
imal cliques. This plays an important role in Booth and
Lueker’s algorithm. The number of maximal cliques in
a circular-arc graph can be exponential in n [22].

Our algorithm is based on modular decomposition,
transitive orientation of comparability graphs, and al-
gorithms on permutation graphs and interval graphs.
For overviews of these topics, their applications, and
their relationships to circular-arc graphs, see the books
by Golumbic [10] and Roberts [20], and the survey ar-
ticle by Moehring [17]. A detailed presentation of the
results that we give in this abstract can be found in [14].

2. Preliminaries

Let G = (V,E) be a graph. Let E′ ⊆ G denote that
E′ ⊆ E, and e ∈ G denote that e ∈ E. G denotes
the complement of G. GT denotes the transpose. If
v is a vertex in G, N(G, v) denotes the neighbors of v
in G, and N [G, v] denotes the closed neighborhood,
N(G, v) ∪ {v}. N(v) and N [v] denote these when G is
understood.

We may assume without loss of generality that no
endpoints of arcs coincide. Let us call the clockwise
endpoint of an arc x the left endpoint, l(x), and the
counterclockwise endpoint the right endpoint, r(x).
We find it convenient to let x stand both for a ver-
tex in G and for the arc [l(x), r(x)] in the realizer. The
actual positions of the endpoints on the circle are ir-
relevant; we consider the realizer R to be the cyclic
ordering of {l(x) : x ∈ V } ∪ {r(x) : x ∈ V }. Analogous
observations apply in the special case of an interval
realizer.

If G is a graph or R a realizer, and X ⊆ V , we let
G|X and R|X be the subgraph or realizer induced by
members of X. We treat a matrix as the adjacency
matrix of a complete edge-labeled graph on V , where
the members of V are numbered. The label in row i
and column j of the matrix is the label of (vi, vj) in
this graph. An unlabeled graph G can be treated as
a special case; the adjacency matrix implicitly labels
all edges of a complete graph with 0s and 1s. This
gives an obvious generalization of many concepts from
graphs to matrices. For instance, we may speak of the

set V of “vertices” of a matrix and the restriction M |X
of the matrix to a set of vertices.

A module of a matrix [5, 6] corresponds to a set X
of vertices such that for every vertex y 6∈ X, all directed
edges in X × {y} have the same label, and all directed
edges in {y} × X have the same label. In this case,
y fails to distinguish members of X. The definition
applies to unlabeled graphs as a special case [9, 10, 17].
If X and Y are disjoint modules, then every element
of X × Y has the same label. A partition P of V is
a modular partition if every part is a module. If P
consists of one representative of each part, then G|P
or M |P completely specify everything about the graph
or matrix, except those portions of it that are internal
to a single part.

Two sets A and B overlap if A∩B, A−B, and B−A
are all nonempty. A family F of subsets of a set V is
a tree-decomposable family if V and its singleton
subsets are members of F , and whenever X and Y are
overlapping members of F , then X ∪Y , X ∩Y , X−Y ,
Y −X, and (X−Y)∪ (Y −X) are members of F . The
strong members of F are those members that properly
overlap with no other member of F . The transitive re-
duction of the containment relation on strong members
is a tree. The nodes of the tree can be labeled prime
and degenerate so that every member of F is either
a node of the tree or a union of children of a degen-
erate node. This is the decomposition tree for the
family [5, 6, 18, 19]. The modules of a graph or matrix
are an example of a tree-decomposable family, and its
decomposition tree is the modular decomposition.

An undirected graph is a special case of a digraph
where each undirected edge represents two oppositely
oriented directed edges. A digraph is transitive if,
for every pair (a, b) and (b, c) of directed edges, (a, c)
is also a directed edge. A transitive dag is a natural
model of a partial order. A transitive orientation
of an undirected graph is the elimination of one of the
two directed edge from each undirected edge so that
what remains is a transitive dag. A graph is a compa-
rability graph if there exists a transitive orientation
of it. Finding a transitive orientation of a comparabil-
ity graph takes O(n+m) time [16]. The Γ relation on
an undirected graph is a relation on its directed edges
where, if ab and ac are two undirected edges with com-
mon vertex a and the two other vertices b and c non-
adjacent, (a, b)Γ(a, c) and (b, a)Γ(c, a). The Γ impli-
cation classes are the groups of directed edges that
are directly or indirectly related to each other.

It is easily seen that any transitive orientation that
contains a directed edge (a, b) must contain the impli-
cation class that contains (a, b). The implication class
containing (b, a) is given by the transpose of the class

2

containing (a, b). The union of an implication class and
its transpose is a Γ color class.

It is easily seen that the vertices spanned by a color
class are a module, and the subgraph induced by a
module must contain all edges of a color class if it con-
tains any of them. This defines a type of duality be-
tween the color classes and the modules; either of them
can be used to represent the other.

The complement of an interval graph is a compara-
bility graph; the order of left endpoints in a realizer is
a linear extension of a transitive orientation of it. A
permutation graph is a graph G derived from two
orderings of V : for x, y ∈ V , xy is an edge iff x is be-
fore y in one of the orders, and after y in the other.
The two orderings are a realizer of the permutation
graph. Reversing one of the two orderings causes the
realizer to realize the complement of the graph. Both
orders are linear extensions of transitive orientations of
the graph.

3. Summary of the approach

Given a circular-arc realizer, let V denote the set
of arcs. We can partition the edges of the complete
graph on V into the following subgraphs: G1 is the
pairs of circular arcs that each contain one endpoint of
the other, G2 is the pairs that cover the circle so that
each contain both endpoints of the other, Gc is the
pairs where one arc contains the other, and Gn = G
is non-intersecting pairs of arcs. Let Dc be the orien-
tation of Gc where (x, y) is a directed edge iff arc x is
contained in arc y.

We may think of G1, G2, Dc, (Dc)T , and Gn as con-
stituting an n×n adjacency matrix whose nonzero en-
tries are labeled with the type of intersection. (In prac-
tice, we use the corresponding labeling of an adjacency-
list representation.) Let us call this an intersection
matrix. When we wish to emphasize that it is known
that there is a circular-arc realizer, we will call it a
circular-arc matrix. A circular-arc matrix is an in-
terval matrix if there exists a realizer that does not
cover the circle; this happens only if the corresponding
graph is an interval graph. We use multiple subscripts
to denote unions of these edge sets. For instance, if T
is a circular-arc matrix, G12c = G1 ∪G2 ∪Gc = G(T)
is the circular-arc graph it represents.

A departure of our approach from previous ones is
the use of a operation on a realizer that we will call
a geometric flip. This consists of replacing an arc
x with one that has the same endpoints, but travels
the opposite way around the circle. (Figure 2). This
changes the types of relationships involving x’s arc in a
predictable way, which we will call an algebraic flip:

a b c d e f
a t 1 2 n c
b c 1 2 n c

c 1 1 c n 1
d 2 2 t t 2
e n n n c n
f t t 1 2 n

a n 1 c t 2
b n 1 2 n c
c 1 1 c n 1
d t 2 t t 2
e c n n c n
f 2 t 1 2 n

a b c d e f

ef

dc

b aea f

dc

b

Figure 2. A flip operation has a predictable
effect on a circular-arc matrix; one does not
need to know a realizer of the matrix to know
what effect a flip will have on it. Here, edges of
G1, G2, Gn, Dc, and (Dc)T are labeled 1, 2, n, c,
and t, respectively.

• (x, y) ∈ G2 becomes (x, y) ∈ Dc and (x, y) ∈ Dc

becomes (x, y) ∈ G2

• (x, y) ∈ Gn becomes (x, y) ∈ (Dc)T and (x, y) ∈
(Dc)T becomes (x, y) ∈ Gn

• (x, y) ∈ G1 remains unchanged

One matrix being obtainable from another by a se-
quence of algebraic flips is an equivalence relation on
intersection matrices. Let us call this relation flip-
equivalence. Every flip-equivalence class on circular-
arc matrices contains an interval matrix: in a circular-
arc realizer of a matrix T , if one picks a point on the
circle that does not coincide with an endpoint of an arc
and flips all arcs containing the point, the resulting set
of arcs will fail to cover the circle at that point, and
realize the interval matrix T ′ obtained from T by the
equivalent algebraic flips.

Our algorithm produces a circular-arc realizer of G
if it is a circular-arc graph. If it is not a circular-arc
graph, it may return the realizer of another graph, but
it is easy to check in linear time whether the returned
realizer realizes G. Algorithm 3.1 summarizes the ap-
proach.

Algorithm 3.1 Constructing a circular-arc realizer of
a circular-arc graph G.

1. Find an intersection matrix T that is realized by
some realizer of G if G is a circular-arc graph;

3

2. Perform a set of algebraic flips on T to obtain an
interval matrix T ′;

3. Find an interval realizer R′ of T ′;

4. Invert the flips used to obtain T ′ from T , but ap-
ply them as geometric flips to R′. This gives a
circular-arc realizer R of T .

4. Computing a circular-arc matrix for G

In this section, we describe the implementation of
Step 1 of Algorithm 3.1. By a reduction given in [11],
we may assume that G has no duplicated neighbor-
hoods of the form N [x] = N [y], and no universal
vertices of the form x : N [x] = V .

Let T (G) denote the n × n matrix T of labels that
is defined as follows:

If vi and vj are nonadjacent then Tij = Gn
else if N [vi] ⊂ N [vj] then Tij = Dc

else if N [vj] ⊂ N [vi] then Tij = (Dc)T

else if N [vi] ∪ N [vj] = V and for each vk ∈
N [vi]−N [vj], N [vk] ⊂ N [vi] then Tij = G2

else Tij = G1

Theorem 4.1 [11] If G is a circular-arc graph with
no duplicated neighborhoods or universal vertices, then
T (G) is the intersection matrix of a circular-arc real-
izer of G.

A chordal bipartite graph is a bipartite graph
with no chordless cycles of length 6 or greater. Let
n1 and n2 denote the sizes of its bipartition classes.
A neighborhood containment test on two ver-
tices x and y consists of evaluating the expression
N(x) ⊆ N(y). A disjoint neighborhood test con-
sists of evaluating whether N(x) ∩N(y) is empty.

Theorem 4.2 [21] Neighborhood containments tests
between between k pairs of vertices in a chordal bipar-
tite graph can be performed in O(n1n2 + k) time.

Theorem 4.3 [7] Let G be an arbitrary circular-
arc graph, and let m0 be a vertex whose arc con-
tains no other in some circular-arc realizer of G. Let
D(N ′[m0], V, ED) be a bipartite graph, where N ′[m0] is
a copy of N [m0], and xy ∈ ED iff x 6= y and xy 6∈ E.
Then D is chordal bipartite.

In the statement of Theorem 4.3 in [7], m0 is said
to be a vertex of minimum degree, but the proof only
places the restriction on m0 that we state in Theo-
rem 4.3.

Theorem 4.4 Let G be a graph and let U ⊆ V such
that G|U is an interval graph. Then it takes O(n+m+
n|V −U |) time to evaluate the expressions N [x]∩U ⊆
N [y] ∩U and (N [x] ∩U) ∪ (N [y] ∩U) = U at all pairs
{x, y} of vertices such that x ∈ U and y ∈ V − U .

Theorem 4.5 It takes O(n + m) time to determine
that G is not a circular-arc graph, or else evaluate the
expressions N [x] ∪ N [y] = V and N [x] ⊆ N [y] and
N [y] ⊆ N [x] at each edge (x, y) ∈ G.

Eschen and Spinrad give only O(n2) variants of The-
orems 4.4 and 4.5, but it is quite easy to obtain the
tighter bounds using their methods.

To find T (G), it remains to show the following:

Theorem 4.6 It takes O(n + m) time to determine
that G is not a circular-arc graph, or else evaluate the
expression N [x] ∪N [y] = V , and for each z ∈ N [x] −
N [y], N [z] ⊆ N [x].

Eschen and Spinrad give O(n2) bounds for Theo-
rem 4.6 only for the special case of a circular-arc graph
that is coverable with two cliques. We need a linear
time bound for arbitrary circular-arc graphs. We out-
line the proof in the remainder of this section.

Theorem 4.7 Let H be a graph, and let {A,B,C} be
a partition of its vertices such that H|(B ∪ C) is an
interval graph, but the edges of H|B are unknown. It
takes O(m + n|A ∪ B|) time to evaluate N [x] ∩ C ⊆
N [y] ∩C at all adjacent pairs {x, y} such that at most
one of x and y is in A ∪B.

Using tricks from [7], it is easy to solve this problem
if an interval model of a graph H ′ on B∪C is available
such that H ′|C = H|C, and edges of H ′ between B and
C are the same as the edges of H between B and C.
This is known as finding a realizer of a probe interval
graph. Using a variant of the ∆ tree from Section 5,
below, we are able to solve this subproblem within the
required time bound.

Flipping of arcs now provides the required reduc-
tions for the proof of Theorem 4.6. We again assume
that G has no duplicated neighborhoods or universal
vertices. Flipping y causes it to lose precisely those
neighbors whose arcs, hence whose neighborhoods, are
contained in N [y]. If N [x] ∪ N [y] = V then flipping
y and testing whether its neighborhood is now con-
tained in N [x] tells whether for every z ∈ N [y]−N [x],
N [z] ⊆ N [y].

We take advantage of this observation by computing
part of a graph H that would result from adding copies
of a set F of arcs in T (G) that may be involved in G2

4

relationships, flipping these copies, and testing neigh-
borhood containments involving them. In particular,
whenever x and y are adjacent, N [x] ∪N [y] = V , and
the degree of x in G is at least the degree of y in G,
we make sure that there is a copy x′ of x in F . Since
deg(x) = Ω(n), the size of H is still O(n + m) after
members of F are flipped. However, if x′, y′ ∈ F , we
cannot yet tell whether x′ and y′ are adjacent in H, as
this depends on whether xy ∈ G1 or xy ∈ G2, so H|F
remains unknown.

Let m0 be a vertex of degree O(m/n) whose arc is
contained in no other in T (G). Let X = N [H,m0]∩V ,
Y = N [H,m0] ∩ F . Define bipartite graphs D1(X ∪
Y, V) and D2(X,V ∪ F) as described in Theorem 4.3.
The edges of H that are required to compute each of
these are known. Each must be chordal bipartite, as
they are induced subgraphs of the unknown chordal
bipartite graph on H defined by Theorem 4.3. Note
also that HI = H|((V − X) ∪ (F − Y)) is an interval
graph, since in any realizer of H, the corresponding
arcs fail to cover m0.

Break the problem into two parts: N [H, y′] ∩ X ⊆
N [H,x]∩X and N [H, y]∩(V −X) ⊆ N [H,x]∩(V −X).
The cases depend on whether x ∈ X or x ∈ V −X, and
whether y′ ∈ Y or y′ ∈ F − Y . In each case, the time
bound follows from the fact that |F | and |N [m0]| are
O(m/n). The technique for most cases is illustrated by
the case where x ∈ V −X, y′ ∈ Y : For N [H, y′]∩ (V −
X) ⊆ N [H,x] ∩ (V −X), apply Theorem 4.4, and for
N [H, y′]∩X ⊆ N [H,x]∩X, apply Theorem 4.2 to D2.

The outlying case is finding N [H, y′] ∩ (V − X) ⊆
N [H,x]∩(V −X) when x ∈ X and y′ ∈ F−Y . Let HP

be the probe interval graph obtained by omitting the
unknown edges of H|(F − Y) from HI . Apply Theo-
rem 4.7 on H|(V ∪(F−Y)), using A = X, B = (F−Y),
and C = (V −X).

5. Finding an interval realizer of an in-
terval matrix

The left-endpoint order in an interval realizer R of
an interval matrix T is a linear extension of a transi-
tive orientation D1n of G1n in the matrix. Let us call
D1n an interval orientation; D1n is uniquely defined by
the left endpoint order (or, symmetrically, by the right
endpoint order). Conversely, the left endpoint order is
given by (Dc)T ∪D1n and the right endpoint order is
given by Dc ∪D1n.

From this observation, it is easy to get an interval
realizer in linear time, given a linear extension of D1n.
The trick is given as part of the permutation-graph
recognition algorithm of [16]; Gc and G1n are com-
plementary comparability graphs, hence permutation

graphs, and the left endpoint order and right endpoint
order are the two permutations that realize them. This
reduces the problem of finding an interval realizer to
the problem of finding a linear extension of an interval
orientation of G1n.

The transitive orientation algorithm of [16] can be
used to find a linear extension of a transitive orienta-
tion of G1n in linear time, but this is not sufficient to
ensure an interval orientation of G1n. Interval orienta-
tions place additional constraints on the solution. For
instance, the restriction of an interval orientation to Gn
must also be a transitive orientation of Gn, and not all
transitive orientations of G1n have this property.

5.1. A Γ-like relation for interval orientations

Let us define an analog ∆ of the Γ relation for the
problem of finding an interval orientation instead of
just a transitive orientation. (The Γ relation involves
two edges joined at one end, resembling the letter Γ,
while ∆ involves three relationships that make a trian-
gle.) Let Γn denote the Γ relation on Gn, let Γ1 denote
the Γ relation on G1, and let Γ1n denote the Γ relation
on G1n.

Definition 5.1 Let {a, b, c} be three vertices. Then
(a, b)∆(a, c) and (b, a)∆(c, a) if one of the following ap-
plies:

• (a, b)Γn(a, c) (i.e. ab, ac ∈ Gn and bc ∈ G1c);

• (a, b)Γ1n(a, c) (i.e. ab, ac ∈ G1n and bc ∈ Gc);

• ab ∈ Gn and bc, ac ∈ G1.

By analogy to Γ, we let the ∆ implication classes
be the equivalence classes of the transitive symmetric
closure of ∆, and the ∆ color classes be the union of
each equivalence class and its transpose.

Definition 5.2 Let T be an interval matrix. Let U(T)
denote the matrix obtained from T by replacing each in-
stance of Dc or (Dc)T with Gc, thereby “unorienting”
the directed edges in Dc. Let us say that a set M of ver-
tices overlaps a set E′ of edges of T if T |M contains
some members, but not all members, of E′. A module
of T or of U(T) is a ∆ module if it is a module that
is a clique of G(T), or else a module X such that for
no y ∈ V −X, {y} ×X ⊆ G1.

Theorem 5.3 The ∆ modules of U(T) are a tree-
decomposable family.

Definition 5.4 Let us call the tree decomposition of
U(T) the ∆ tree of U(T), and denote it ∆(U(T)).

5

Theorem 5.5 A set of edges of G1n is a ∆ color class
iff it is the set of edges of G1n connecting children of a
prime node in the ∆ tree of U(T) or the set of edges of
G1n connecting a pair of children of a degenerate node.
If X and Y are two disjoint nodes of the tree, then
no ∆ implication class contains both directed edges in
X × Y and directed edges in Y ×X.

Theorem 5.6 If T is an interval matrix, then an ori-
entation of G1n is an interval orientation iff it is a
union of ∆ implication classes.

The proofs are similar to the analogous one for stan-
dard modules and transitive orientations of compara-
bility graphs given in [10, 17].

The following is a corollary of Theorems 5.5 and 5.6:

Lemma 5.7 Let T be an interval matrix and let R be
an interval realizer of T .

1. If Y is a node of ∆(U(T)) that is a clique of G(T),
the left endpoints of Y are consecutive in R and
the right endpoints of Y are consecutive in R.

2. If Z is a node of ∆(U(T)) that is not a clique, the
endpoints of Z are consecutive in R.

5.2. An algorithm for finding a realizer of an inter-
val matrix

An interval matrix already gives the orientation Dc

of Gc. To find a realizer, it remains to find the orienta-
tion D1n of G1n. To do this, we find a linear extension
of D1n; this avoids the Θ(n2) cost of touching the edges
of Gn, which are implicit in the sparse representation.

Let us say that an ordering (X1, X2, ..., Xk) of parts
of a partition of V is consistent with an interval ori-
entation D1n if all edges of D1n that go between two
parts are directed from earlier to later parts.

Let (X1, X2, ...,W, ...,Xi−1, Y,Xi+1, ..., Xk) be an
ordering of parts on vertices of T . (A requirement is
that W 6= Y). Let w ∈ W , let Yn = N(Gn, w) ∩ Y ,
Y1 = N(G1, w) ∩ Y , and Yc = N(Gc, w) ∩ Y . A pivot
on Y with pivot vertex w consists of the following
refinement of the partition: (X1, X2, ..., W, ..., Xi−1,
Yc, Y1, Yn, Xi+1, ..., Xk). If W is later than Y in
the ordering, a symmetric operation also constitutes a
pivot: (X1, X2, ..., Xi−1, Y, Xi+1, W, ..., Xk) becomes
(X1, X2, ..., Xi−1, Yn, Y1, Yc, Xi+1, ..., W, ..., Xk).
(Notice that the order of Yn, Y1, Yc, is reversed.) We
assume that if Yc, Y1, or Yn is empty, it is removed from
the refinement. This definition is based on the pivot
of [16], which divides Y into N(w)− Y and N(w)∩ Y .

Lemma 5.8 Let T be an interval matrix.

1. If a sequence of parts on vertices of T is consistent
with some interval orientation D1n of G1n in T ,
then they remain consistent with D after a pivot.

2. Let X be the rightmost part in a sequence of parts
before a pivot, let X ′ be the rightmost part after a
pivot and let x ∈ X ′. If there exists an interval
orientation D1n of G1n where all edges of D1n be-
tween V − Xand{x} are oriented toward x, then
all edges of D1n between V −X ′ and {x} are also
oriented toward x.

The proof proceeds by induction on the number of
pivots, using the ∆ relationships between edges of D1n

that already go between parts and edges of G1n that
go between Yc, Y1, and Yn.

Suppose there are no modules of the interval ma-
trix other than V and its singleton subsets. When one
selects an arbitrary vertex x and begins with initial
partition ({x}, V − {x}), one finishes with a linear or-
der where the last part {y} contains a vertex y that
is a sink in an interval orientation, by Part 2. It is
a source in the transpose of this orientation, which is
also an interval orientation. Running pivoting a second
time with ({y}, V − {y}), we get a linear extension of
an interval orientation, by Part 1.

If the interval matrix has nontrivial modules, then
pivoting will fail to break up any module that starts out
in a single part. We show that during the second par-
tition that starts with initial partition ({y}, V − {y}),
every one of these modules is a ∆ module. By Theo-
rem 5.6, edges internal to these modules may be ori-
ented independently of edges external to them. Thus,
the ∆ modules encountered can be dealt with by recur-
sion. We get a linear bound by extending the linear-
time approach of [16] to work on symmetric matrices
that have nontrivial modules and O(1) different kinds
of entries.

6. Turning a circular-arc matrix into an
interval matrix.

In this section, we describe the implementation of
Step 2 of Algorithm 3.1.

We proceed by incrementally performing flips to
transform an intersection matrix for the original in-
put graph into an interval matrix. At each point, we
will let T denote the current state of the matrix, and
let Gc, Gn, G1, and G2 refer to those graphs in T . The
matrix passes through the following stages:

T0: T0 = T (G), computed as in Section 4.

6

vo

D 3
D2D 1

C1
C1A

"
’

vo

D 3
D2D 1

C1
C1’

"

A

p

Figure 3. The set W of non-neighbors of v0

can be divided into components {D1, D2, ...
, Dk} of G1n, which are ordered in ascend-
ing order of containment. In T2, the set U
of neighbors of v0 is a clique and all pairs in
U are adjacent in Gc or G1. Each component
Gc|U covers one endpoint of v0’s arc. In this
example, Q = {C ′1, C ′′1 , A}. Flipping the mem-
bers of Q, as needed, so that they cover the
right endpoint of v0, yields T3. At this point, it
is easy to identify the arcs that contain the ex-
treme endpoint p of D1. Flipping these leaves
a region of the circle uncovered matrix.

T1: T1 is a matrix that has a vertex v0 of degree
O(m/n), such that the arc corresponding to each
neighbor of v0 contains exactly one endpoint of
v0’s arc in a realizer of T1.

Let U = N(G(T1), v0) and W = V −
N [G(T1), v0]. (It will be the case that
N(G(T1), v0) = N(G(T2), v0) = N(G(T3), v0)).
Let {D1, D2, ..., Dk} be the components of G1n|W .
Edges between Di and Dj are labeled Gc. These
components can be ordered so that they are la-
beled Dc when j > i. The union A(D1) of arcs in
D1 is contained in the intersection of arcs in D2,
..., Dk.

T2: (See Figure 3.) T2 shares the above properties with
T1, but Gn|U and G2|U are empty, and all arcs in
each component of Gc|U cover a single endpoint
of v0 in any circular-arc realizer of T2.

Let Q = {C1, C2, ..., Ch} denote the components
of Gc|U that contain an arc with an endpoint in
A(D1). If two members of Q cover opposite end-
points of v0, flipping all members of one of them
will make them cover the same endpoint.

T3: The components of Q are flipped, as necessary, so
that they all cover the same endpoint of v0, and
they all, therefore, fail to cover one endpoint, p,
of A(D1). T3 is the resulting intersection matrix.
All arcs in V −

⋃
Q either contain A(D1) or are

disjoint from it. These can be distinguished from
each other by their relationship to any member of
D1 in T3.

T4: Flipping the arcs in T3 that contain A(D1) leaves
the region of the circle adjacent to p and outside
of A(D1) uncovered by any arc. T4 is therefore an
interval matrix.

Turning T0 into T1: We select a vertex v of min-
imum degree in G. If v has no G2 relationships, we
select v0 = v. Otherwise, we select a neighbor of v in
G2 that is contained in no other arc according to Dc,
flip it, and set v0 to be the corresponding vertex. Now,
v0 is isolated in G2 and is a source in Dc. We flip every
neighbor in Dc; now v0 is isolated in Dc. All arcs that
intersect v0 are neighbors in G1, hence contain exactly
one endpoint of v0, and v0 has at most the degree of v,
which is O(m/n). T1 is the state of T at this point.

Turning T1 into T2: If, for a vertex x ∈ U , x
contains v0’s right endpoint, then flipping x will make
it contain v0’s left endpoint instead. If x, y ∈ U and
xy ∈ Gn or xy ∈ G2, x and y contain opposite end-
points of v0. G2n|U is therefore bipartite. Flipping

7

one bipartition class in each component of G2n|U elim-
inates all edges of G2n|U .

Turning T2 into T3: (See Figure 3.) Let Q′ =
{C ′1, C ′2, ..., C ′h′} be the components of Dc|U that have
a member that distinguishes members of D1, and let
Q′′ = {C ′′1 , C ′′2 , ..., C ′′h′′} be the set {C : C is a com-
ponent of Dc|U , C 6∈ Q′ and there is a member of D1

that distinguishes members of C}. LetA denote the set
{A : A is a component of Gc|U such that A×D1 ⊆ G1}.
Q = Q′ ∪Q′′ ∪ A.

Case A: Q′′ is nonempty: Let us consider an edge
Gc to be “stronger” than an edge of G1, and an edge
G1 to be “stronger” than an edge of Gn. For x, y ∈ U ,
let x � y denote that for every z ∈W , the relationship
of y to z is at least as strong as the relationship of x
to z, and let x ∼ y denote that x � y or y � x. If x
and y cover the same endpoint of v0, then x ∼ y, since
one of these arcs reaches at least as far into the region
occupied by W , and either they both enter this region
clockwise, or they both enter it counterclockwise. If A
and B are two components of Gc|U , then let A � B
denote that for every x ∈ A and y ∈ B, x � y. Let
A ∼ B denote that A � B or B � A.

Every member of each of these components covers
the same endpoint of v0. Suppose A and B cover the
same endpoint. For any realizer R of T2, R|(A∪B) is an
interval realizer, since it does not cover the other end-
point of v0. Since A and B are cliques of G(T2|U), they
are ∆ modules, and children of the root of ∆(T2|U). By
Lemma 5.7, we may suppose without loss of general-
ity that all left endpoints of arcs in A precede all left
endpoints of arcs in B, and that all right endpoints of
arcs in A precede all right endpoints of arcs in B. Ev-
ery right endpoint of B reaches at least as far into W
as any arc in A, and from the same direction, hence
A ∼ B.

The following is now quite easy to show:

Lemma 6.1 If A ∈ Q′′, B ∈ Q′′ ∪ Q′ and A 6= B,
then A ∼ B iff A and B cover the same endpoint of v0

in B.

Lemma 6.1 gives a simple criterion for flipping the
all members of Q so that they cover the same endpoint
of v0 as some A ∈ Q′′ does.

Case B: Q′′ is empty: Let us say that an inter-
val x in an interval realizer R is a leftmost interval
if its left endpoint is to the left of all others, and a
rightmost interval if its right endpoint is to the right
of all others. Recall that x distinguishes two vertices
in the corresponding interval matrix if it has different
relationships to them in the interval matrix.

Lemma 6.2 Let R be an interval realizer of an inter-
val matrix T , and let x ∈ V that distinguishes members
of V −{x} in T . If x is leftmost in R and G1n|(V −{x})
is connected, then it is not possible to realize T by re-
moving x from R and replacing it with a rightmost in-
terval.

Let c1 ∈ C ′1 such that c1 distinguishes members of
D1. If R is a circular-arc realizer of T2, R|(D1∪{c1}) is
an interval realizer, since it fails to cover one endpoint
of v0, and c1 is either a leftmost or rightmost interval
in it. We may assume without loss of generality that
R is a realizer where it is leftmost. Let D′ be the
interval orientation of G1n given by R. Since c1 is a
leftmost interval, it is a source in D′|(D1 ∪ {c1}), and
G1n|(D1 ∪ {c1}), is connected and spans D1 ∪ {c1}.

We may perform a sequence of pivots as in Sec-
tion 5.2 in linear time, with initial partition ({c1}, D1),
and halting when each part in ({c1}, X2, X3, ..., Xk) is
a module of T . For each i from 2 to k, let xi denote an
arbitrary member of Xi, and let X = {x2, x3, ..., xk}.
By Lemma 5.8 (Part 1), (x2, x3, ..., xk) is a linear ex-
tension of the interval orientation given by R|X. Since
this interval orientation is forced by the ∆ relation and
the assumption that c1 is leftmost, the same interval
orientation applies, no matter how the representatives
{x2, ..., xk} are selected from {X2, ..., Xk}. Using the
interval orientation, we may construct an interval re-
alizer R′ of R|X. The same R′ reflects R|X for any
selection of {x2, ..., xk}.

If C ′j 6= C ′1, then C ′j contains cj that distinguishes
members of D1. It either distinguishes members of
some Xi, or distinguishes Xi from Xj . In either case,
it is easy to select X = {x2, x3, ..., xk} so that cj dis-
tinguishes members of it. Now cj is either leftmost or
rightmost in R|{cj , x2, ..., xk}, depending on whether
it covers the same endpoint of v0 as c1 does. The out-
come of this test tells whether to flip the members of
C ′j in order to get them to contain the same endpoint
of v0 as C ′1 does.

Dealing with members of A. Let Tc be the result
of flipping members of Q′ and Q′′ so that they cover
the right endpoint of v0 in some realizer Rc of Tc. With
the exception of arcs in A, this is all arcs in U that have
an endpoint in A(D1).

Lemma 6.3 There is a circular-arc realizer of Tc
where all members of Q′, Q′′, and A cover the right
endpoint of v0.

Proof: Let Rc be a circular-arc realizer of Tc, Let
A ∈ A be a component that does not cover the right
endpoint of v0 in Rc. A is a component of G1 and a
clique. Flipping the members of A in Rc has no effects

8

on Tc other than reversing the orientations of edges
of Dc in Tc|A. By Lemma 5.7, these effects can be
cancelled by then reversing the order of left endpoints
and the order of right endpoints of members of A in
Rc. 2

For the analysis of the time bound, we must not
assume that the input graph is a circular-arc graph.
Theorem 4.5 ensures that we do not spend more than
linear time finding neighborhood containments, even if
G is not a circular-arc graph.

Since U has O(m/n) members, the size of this array
is O(m). Turning T3 into T4 requires us to flip all
members of D2, ..., Dk. The intersection of all of these
arcs contains D1, from which we may deduce that each
of them has Ω(n) edges in G(T3), and the number of
edges of G(T3) is O(m), where m is the number of edges
of the input graph to the recognition problem. From
this, we may spend O(n) time flipping all of these and
incur a total of O(m). The step also requires flipping
neighbors of v0, but there are only O(m/n) of these.

For turning T2 into T3, we may have to compute
the � relation in U . For x, y ∈ U in T2, x � y iff
N [Gc, x]∩W ⊆ N [Gc, y]∩W and N [x]∩W ⊆ N [y]∩W
in T2. Since U ∪ {v0} is a clique in G(T2), N [x]∩W ⊆
N [y] ∩W iff N [x] ⊆ N [y]. Theorem 4.1 gives this in
linear time.

To evaluate N [Gc, x] ∩W ⊆ N [Gc, y] ∩W for each
pair x, y of neighbors of v0, note that if all members
of N(v0) are flipped, N(v0) remains a clique, and the
edges of Gn and Gc that are incident to each member
of N(v0) are swapped. N [Gc, x] ∩W ⊆ N [Gc, y] ∩W
iff N [x]∩W ⊆ N [y]∩W after N(v0) is flipped. We get
the latter with Theorem 4.1 in linear time. Flipping
N(v0) takes O(n(m/n)) = O(m) time.

If Q′′ is empty, we have to perform pivots on
{{c1}, D1}, but this requires linear time, as we have
claimed in Section 5.2. From the resulting linear ori-
entation, we can get the realizer for T3|{x1, x2, ..., xk}
in linear time, as explained in Section 5.2. For each
cj ∈ C ′j , it is easy to apply Lemma 6.2, and charge the
cost to edges of G(T3) incident to cj . A key observa-
tion is that we do not have to recompute the realizer
for each selection of {x1, x2, ..., xk}.

The remaining steps are easy to bound using ele-
mentary observations.

7. Relationship to Other Work

Tucker was the first to recognize the importance
of finding neighborhood containments in recognizing
circular-arc graphs [22]. This step was a bottleneck
in his algorithm. Eschen and Spinrad’s innovations for
this step in [7] are obviously critical for our time bound.

∆ trees are reminiscent of trees used by Hsu [11] for rep-
resenting sets of possible arrangements of endpoints in
a circular-arc realizer of a particular circular-arc ma-
trix, rather than an interval matrix. Because the do-
main is more general, they are more difficult to de-
scribe, and many of the mathematical and algorithmic
tools that we have developed for ∆ trees are difficult
to apply to them.

Johnson and Spinrad [12] have independently found
an O(n2) solution to the problem mentioned in Sec-
tion 4 of finding an interval realizer of a probe interval
graph. They were motivated by its applications in ge-
netics. They use a tree that is also reminiscent of Hsu’s,
and whose leaves are the endpoints of intervals, rather
than the vertices. It represents all possible endpoint
placements in a realizer of an interval graph, rather
than an interval matrix. An O(n + m log n) bound
for finding a realizer of a probe-interval graph is given
in [15]. Additional applications and properties of ∆
trees are also given there.

Acknowledgments

This research was supported by the University of
Metz. The author would like to thank Dieter Kratsch
for extensive inputs to this paper.

References

[1] S. Benzer. On the topology of the genetic fine struc-
ture. Proc. Nat. Acad. Sci. U.S.A., 45:1607–1620,
1959.

[2] K. Booth. PQ-Tree Algorithms. PhD thesis, Depart-
ment of Computer Science, U.C. Berkeley, 1975.

[3] S. Booth and S. Lueker. Testing for the consecutive
ones property, interval graphs, and graph planarity us-
ing PQ-tree algorithms. J. Comput. Syst. Sci., 13:335–
379, 1976.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Algo-
rithms. MIT Press, Cambridge, Massachusetts, 1990.

[5] A. Ehrenfeucht and G. Rozenberg. Theory of 2-
structures, part 1: Clans, basic subclasses, and mor-
phisms. Theoretical Computer Science, 70:277–303,
1990.

[6] A. Ehrenfeucht and G. Rozenberg. Theory of 2-
structures, part 2: Representations through labeled
tree families. Theoretical Computer Science, 70:305–
342, 1990.

[7] E. Eschen and J. Spinrad. An O(n2) algorithm for
circular-arc graph recognition. Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, 4:128–137, 1993.

[8] D. Fulkerson and O. Gross. Incidence matrices and
interval graphs. Pacific J. Math., 15:835–855, 1965.

9

[9] T. Gallai. Transitiv orientierbare Graphen. Acta
Math. Acad. Sci. Hungar., 18:25–66, 1967.

[10] M. C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York, 1980.

[11] W. Hsu. O(mn) algorithms for the recognition and
isomorphism problems on circular-arc graphs. SIAM
J. Comput., 24:411–439, 1995.

[12] J. Johnson and J. Spinrad. A polynomial time recog-
nition algorithm for probe interval graphs. Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 12:477–486, 2001.

[13] E. Marczewski. Sur deux proprietés des classes
d’ensembles. Fund. Math., 33:303–307, 1945.

[14] R. McConnell. Linear-time recognition of circular-arc
graphs. Technical Report CU-CS-914-01, University
of Colorado, Boulder, 2001.

[15] R. McConnell and J. Spinrad. Construction of probe
interval models. Manuscript.

[16] R. M. McConnell and J. P. Spinrad. Modular decom-
position and transitive orientation. Discrete Mathe-
matics, 201(1-3):189–241, 1999.

[17] R. H. Möhring. Algorithmic aspects of comparability
graphs and interval graphs. In I. Rival, editor, Graphs
and Order, pages 41–101. D. Reidel, Boston, 1985.

[18] R. H. Möhring. Algorithmic aspects of the substitu-
tion decomposition in optimization over relations, set
systems and boolean functions. Annals of Operations
Research, 4:195–225, 1985.

[19] R. H. Möhring and F. J. Radermacher. Substitution
decomposition for discrete structures and connections
with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356, 1984.

[20] F. S. Roberts. Graph Theory and Its Applications to
Problems of Society. Society for Industrial and Applied
Mathematics, Philadelphia, 1978.

[21] J. Spinrad. Doubly lexical ordering of dense 0-1 ma-
trices. Inf. Process. Lett., 45:229–235, 1993.

[22] A. Tucker. An efficient test for circular-arc graphs.
SIAM Journal on Computing, 9:1–24, 1980.

10

