
AN OVERVIEW OF 

CARDINALITY ESTIMATION 

ALGORITHMS



Cardinality Estimation

 How many unique elements are in a set?

 In SQL:

 SELECT COUNT(DISTINCT ip_addr) AS Cardinality

 Fine for thousands of records, very slow for billions

 Rather than calculating the exact cardinality, 

estimate it



Cardinality Estimation Goals

 Both online and offline calculation are valid use 

cases

 Memory usage must be controlled

 Especially for online calculation!

 Error rates must be predictable and configurable 

depending on the situation at hand



Use Cases

 A frequent query at Google: how many unique IP 

addresses visited Gmail today?

 How many from Fort Collins, CO?

 In a given range of temperature readings, how 

many were unique?

 If the cardinality of a user’s outgoing connections is 

high, could they be infected with malware?

 How many unique words are in Hamlet?



Algorithms

 Bloom Filter

 Linear Counting

 Probabilistic Counting

 HyperLogLog

 HyperLogLog++



Bloom Filter

 Recall: bloom filters tell us whether an element is a 

member of a set

 False positives possible, no false negatives

 The process:

1. Insert incoming values into our bloom filter

2. If the inserted value is not in the filter, increment the 

cardinality counter

 Much more compact than using a bit vector and 

hash function, at the cost of accuracy



Bloom Filter: Issues

 We need to have an idea of how big our set is 

ahead of time

 Bit vectors are allocated up front

 Difficult to resize (but possible)

 Error rates can fluctuate

 As the number of elements increases, accuracy will 

decrease

 Causes cyclic accuracy levels



Linear Counting

 Allocate a bit vector of M bits

 Adjust M based on the expected upper bound for 

cardinality

 Apply a hash function on incoming elements

 Use the hash value to map to a bit in the vector, and 

set it to 1

 Cardinality = M * log(M/Z);

 Where ‘Z’ is the number of ‘zero bits’



Linear Counting: Implications

 Very accurate for 

small cardinalities

 Becomes less efficient 

as we scale up

 Error is determined by 

frequency of hash 

collisions

 Can be compressed to 

further reduce space



Probabilistic Counting Algorithms

 Assume we have a set of random binary integers

 Inspecting the bits, what is the probability that a 
given integer ends in Z zeroes?

 1 / 2Z 

 10111010 = 50%

 10111100 = 25%

 10011000 = 12.5%

 This means the likely cardinality is 2Z

 Fun fact: counting the number of trailing zeroes in a 
binary number is hardware accelerated



However…

 If you were flipping a coin and told me the longest 

run of ‘heads’ you’ve seen is 3

 I’d assume you weren’t flipping the coin for very long

 Let’s say you sat down and flipped a coin 10 times, 

all landing ‘heads.’

 Apart from possibly indicating a two-headed coin, this 

would cause my “coin flipping time” estimate to be 

waaaaay off

 Besides all this, who counts unique random integers?



HyperLogLog

 Hash incoming values to ‘randomize’ them

 Reference implementation uses a 32 bit hash function

 Instead of just counting trailing (or leading) zeroes, 

maintain a set of registers

 These divide incoming values up into several samples

 Now if I have 10 registers and you flip your two-

headed coin 10 times, I still make an accurate estimate

 Stochastic Averaging

 Average the results across sample sets



HyperLogLog Benefits

 With R registers, the standard error of HLL is:

 1.04/sqrt(R)

 Makes configuration simple

 With an accuracy level of 2%, cardinalities up to 

109 can be calculated with 1.5 KB of memory

 Using this algorithm online is very space-efficient!



Error Consistency



Pitfalls

 After cardinalities of 109, hash collisions become 

more frequent and we lose our tight accuracy 

bounds

 The algorithm does not cope well with small 

cardinalities

 To deal with these issues, Google has introduced 

HyperLogLog++



64 Bit Hash Function

 The hash function in HLL is limited to 32 bits

 This limits us to cardinalities of 109 before collisions 

start to be a problem

 HLL implements special logic to deal with cardinalities 

near 232

 Swapping this with a 64 bit hash instead:

 Results in a small increase in memory usage

 Pushes our upper bound to 264

 Eliminates the edge case logic



Error Rates

 With very small datasets, HLL produces large error 

rates

 “SuperLogLog” attempts to mathematically correct 

this issue

 …with limited success

 Alternative: use Linear Counting for small 

cardinalities

 HLL registers are tweaked slightly to act as linear 

counting bit vectors



Small Cardinality Error Rates



Error Rates: Another Look



Bias Correction

 Linear Counting starts 

consuming too much 

memory before HLL 

hits its usual accuracy 

levels

 Switching over to HLL 

early produces a small 

range of high error 

rates



Bias Correction 1

 Google calculated cardinalities for the 40-80k 

range depicted previously

 Using this empirical dataset, a lookup table 

provides estimates for cardinalities between 40-80k



Bias Correction 2

 Redis takes an alternative approach: polynomial 

regression

 Since the curve is fairly smooth, this allows the bias 

for the 40-80k range to be predicted and 

corrected



Redis Bias Correction



Conclusions

 Cardinality estimation has been an important topic 

in databases since the 70s

 HyperLogLog (2007)

 HyperLog++ (2013)

 Being able to estimate cardinality lets us:

 Estimate other dataset parameters

 Reason about data distributions

 Optimize indexes


