# AN OVERVIEW OF CARDINALITY ESTIMATION ALGORITHMS

# Cardinality Estimation

- How many unique elements are in a set?
- □ In SQL:
  - SELECT COUNT(DISTINCT ip\_addr) AS Cardinality
  - Fine for thousands of records, very slow for billions
- Rather than calculating the exact cardinality,
   estimate it

## Cardinality Estimation Goals

- Both online and offline calculation are valid use cases
- Memory usage must be controlled
  - Especially for online calculation!
- Error rates must be predictable and configurable depending on the situation at hand

## Use Cases

- A frequent query at Google: how many unique IP addresses visited Gmail today?
  - How many from Fort Collins, CO?
- In a given range of temperature readings, how many were unique?
- If the cardinality of a user's outgoing connections is high, could they be infected with malware?
- How many unique words are in Hamlet?

# Algorithms

- Bloom Filter
- Linear Counting
- Probabilistic Counting
  - HyperLogLog
  - HyperLogLog++

### **Bloom Filter**

- Recall: bloom filters tell us whether an element is a member of a set
  - False positives possible, no false negatives
- ☐ The process:
  - 1. Insert incoming values into our bloom filter
  - If the inserted value is not in the filter, increment the cardinality counter
- Much more compact than using a bit vector and hash function, at the cost of accuracy

## Bloom Filter: Issues

- We need to have an idea of how big our set is ahead of time
  - Bit vectors are allocated up front
- Difficult to resize (but possible)
- Error rates can fluctuate
  - As the number of elements increases, accuracy will decrease
  - Causes cyclic accuracy levels

## **Linear Counting**

- Allocate a bit vector of M bits
  - Adjust M based on the expected upper bound for cardinality
- Apply a hash function on incoming elements
- Use the hash value to map to a bit in the vector, and set it to 1
- $\square$  Cardinality = M \* log(M/Z);
  - Where 'Z' is the number of 'zero bits'

# Linear Counting: Implications

- Very accurate for small cardinalities
  - Becomes less efficient as we scale up
- Error is determined by frequency of hash collisions
- Can be compressed to further reduce space



# Probabilistic Counting Algorithms

- Assume we have a set of random binary integers
- Inspecting the bits, what is the probability that a given integer ends in Z zeroes?
  - □ 1 / 2<sup>Z</sup>
- $\square$  10111010 = 50%
  - 101111100 = 25%
    - **10011000** = 12.5%
- $\Box$  This means the likely cardinality is  $2^{Z}$
- Fun fact: counting the number of trailing zeroes in a binary number is hardware accelerated

### However...

- If you were flipping a coin and told me the longest run of 'heads' you've seen is 3
  - I'd assume you weren't flipping the coin for very long
- Let's say you sat down and flipped a coin 10 times, all landing 'heads.'
  - Apart from possibly indicating a two-headed coin, this would cause my "coin flipping time" estimate to be waaaaay off
- Besides all this, who counts unique random integers?

# HyperLogLog

- Hash incoming values to 'randomize' them
  - Reference implementation uses a 32 bit hash function
- Instead of just counting trailing (or leading) zeroes,
   maintain a set of registers
  - These divide incoming values up into several samples
  - Now if I have 10 registers and you flip your twoheaded coin 10 times, I still make an accurate estimate
  - Stochastic Averaging
- Average the results across sample sets

# HyperLogLog Benefits

- With R registers, the standard error of HLL is:
  - 1.04/sqrt(R)
  - Makes configuration simple
- □ With an accuracy level of 2%, cardinalities up to 10° can be calculated with 1.5 KB of memory
  - Using this algorithm online is very space-efficient!

# **Error Consistency**



## Pitfalls

- After cardinalities of 10<sup>9</sup>, hash collisions become more frequent and we lose our tight accuracy bounds
- The algorithm does not cope well with small cardinalities
- To deal with these issues, Google has introduced
   HyperLogLog++

## 64 Bit Hash Function

- The hash function in HLL is limited to 32 bits
  - This limits us to cardinalities of 10<sup>9</sup> before collisions start to be a problem
  - HLL implements special logic to deal with cardinalities near 2<sup>32</sup>
- Swapping this with a 64 bit hash instead:
  - Results in a small increase in memory usage
  - $\square$  Pushes our upper bound to  $2^{64}$
  - Eliminates the edge case logic

### **Error Rates**

- With very small datasets, HLL produces large error rates
- "SuperLogLog" attempts to mathematically correct this issue
  - ...with limited success
- Alternative: use Linear Counting for small cardinalities
  - HLL registers are tweaked slightly to act as linear counting bit vectors

# Small Cardinality Error Rates



## Error Rates: Another Look



## **Bias Correction**

- Linear Counting starts consuming too much memory before HLL hits its usual accuracy levels
- Switching over to HLL early produces a small range of high error rates



## **Bias Correction 1**

- Google calculated cardinalities for the 40-80k
   range depicted previously
- Using this empirical dataset, a lookup table
   provides estimates for cardinalities between 40-80k

## Bias Correction 2

- Redis takes an alternative approach: polynomial regression
- Since the curve is fairly smooth, this allows the bias for the 40-80k range to be predicted and corrected

## Redis Bias Correction





## Conclusions

- Cardinality estimation has been an important topic in databases since the 70s
  - HyperLogLog (2007)
  - HyperLog++ (2013)
- Being able to estimate cardinality lets us:
  - Estimate other dataset parameters
  - Reason about data distributions
    - Optimize indexes