AN OVERVIEW OF
CARDINALITY ESTIMATION
ALGORITHMS

Cardinality Estimation

How many unique elements are in a set?

In SQIL:
SELECT COUNT(DISTINCT ip_addr) AS Cardinality

Fine for thousands of records, very slow for billions

Rather than calculating the exact cardinality,
estimate it

Cardinality Estimation Goals

Both online and offline calculation are valid use
cases

Memory usage must be controlled
Especially for online calculation!

Error rates must be predictable and configurable
depending on the situation at hand

Use Cases

A frequent query at Google: how many unique IP
addresses visited Gmail today?

How many from Fort Collins, CO?

In a given range of temperature readings, how
many were unique?

f the cardinality of a user’s outgoing connections is
nigh, could they be infected with malware?

How many unique words are in Hamlet?

Algorithms

!
-1 Bloom Filter
01 Linear Counting

o1 Probabilistic Counting
o HyperlLoglog
o Hyperloglog++

Bloom Filter

Recall: bloom filters tell us whether an element is a
member of a set

False positives possible, no false negatives

The process:
Insert incoming values into our bloom filter
If the inserted value is not in the filter, increment the

cardinality counter

Much more compact than using a bit vector and
hash function, at the cost of accuracy

Bloom Filter: Issues

We need to have an idea of how big our set is
ahead of time

Bit vectors are allocated up front
Difficult to resize (but possible)
Error rates can fluctuate

As the number of elements increases, accuracy will
decrease

Causes cyclic accuracy levels

Linear Counting

Allocate a bit vector of M bits

Adjust M based on the expected upper bound for
cardinality

Apply a hash function on incoming elements

Use the hash value to map to a bit in the vector, and
set it to 1

Cardinality = M * log(M/Z);

Where ‘Z’ is the number of ‘zero bits’

Linear Counting: Implications

Very accurate for
small cardinalities

column C hash function bit map
Becomes Iess effiCienf anrry before scan after scan
as we scale up =i o :
Harry
0 collision 1
Error is determined by - : ;
0 duplicates 1
frequency of hash o : 1
0 1
o o Chris)
collisions s - o colson 1
Norm
Can be compressed to

further reduce space

Probabilistic Counting Algorithms

Assume we have a set of random binary integers

Inspecting the bits, what is the probability that a
given integer ends in Z zeroes?

1 / 21
10111010 = 50%

10111100 = 25%
10011000 = 12.5%

This means the likely cardinality is 27

Fun fact: counting the number of trailing zeroes in a
binary number is hardware accelerated

However...

If you were flipping a coin and told me the longest
run of ‘heads’ you’ve seen is 3

I’d assume you weren'’t flipping the coin for very long

Let’s say you sat down and flipped a coin 10 times,
all landing *heads.’

Apart from possibly indicating a two-headed coin, this
would cause my “coin flipping time” estimate to be
waaaaay off

Besides all this, who counts unique random integers?

HyperlLoglog

Hash incoming values to ‘randomize’ them
Reference implementation uses a 32 bit hash function
Instead of just counting trailing (or leading) zeroes,

maintain a set of registers
These divide incoming values up into several samples

Now if | have 10 registers and you flip your two-
headed coin 10 times, | still make an accurate estimate

Stochastic Averaging

Average the results across sample sets

HyperLoglog Benefits

With R registers, the standard error of HLL is:
1.04/sqrt(R)
Makes configuration simple
With an accuracy level of 2%, cardinalities up to
107 can be calculated with 1.5 KB of memory

Using this algorithm online is very space-efficient!

Error Consistency
-

1.5

o of
MM
o,

|
A

-1,5

Pitfalls

After cardinalities of 107, hash collisions become

more frequent and we lose our tight accuracy
bounds

The algorithm does not cope well with small
cardinalities

To deal with these issues, Google has introduced
HyperlLoglog++

64 Bit Hash Function

The hash function in HLL is limited to 32 bits

This limits us to cardinalities of 10° before collisions
start to be a problem

HLL implements special logic to deal with cardinalities
near 232

Swapping this with a 64 bit hash instead:
Results in a small increase in memory usage
Pushes our upper bound to 2%4

Eliminates the edge case logic

Error Rates

With very small datasets, HLL produces large error
rates

“SuperlLoglog” attempts to mathematically correct
this issue

...with limited success

Alternative: use Linear Counting for small
cardinalities

HLL registers are tweaked slightly to act as linear
counting bit vectors

Small Cardinality Error Rates
=

14 r r ' r . r r . r
“amall _100_awg, txt"
"small_szingle,txt"

12

10 F

I |

1 _
1 .HHMHHE[—'THH

0 100 200 300 400 B0 £00 =) 300 1000

Error Rates: Another Look
N

80000 - Algorihm
— Hilgaar
60000 -
Q
-
m
=
40000 -
o
=
m
o
20000 -
0 -
0 20000 40000 60000 80000

Cardinality

Bias Correction

Linear Counting starts

0.03 Algorihm

consuming too much

NNNNNN

memory before HLL

0.02 +

hits its usual accuracy
levels

0.01+

Median relative bias

Switching over to HLL
early produces a small O RTINS 2 PN
range of high error

Fra feS 001y 20000 40000 60000 80000

Cardinality

Bias Correction 1

Google calculated cardinalities for the 40-80k
range depicted previously

Using this empirical dataset, a lookup table
provides estimates for cardinalities between 40-80k

Bias Correction 2

Redis takes an alternative approach: polynomial

regression

Since the curve is fairly smooth, this allows the bias
for the 40-80k range to be predicted and
corrected

Redis Bias Correction
—

T T T T
"hll-vanilla,txt" + "hll-corrected,txt” +
+y "hll-wanilla-awg, txt" + + "hll-corrected-avg, txt"

-3 1 I I 1 I I 1 1 1

0 10000 20000 30000 40000 20000 BOOO0 7000 20000 0000 100000 0 10000 20000 20000 40000 BOO00 £0000 TO000 20000 30000 100000

Conclusions

Cardinality estimation has been an important topic
in databases since the 70s

HyperLoglog (2007)
HyperlLog++ (2013)

Being able to estimate cardinality lets us:

Estimate other dataset parameters

Reason about data distributions

Optimize indexes

