Muppet: MapReduce-Style
Processing of Fast Data

Amila Suriarachchi
Big Data Group



Motivation

 MapReduce has has emerged as a popular
method to process big data

« However MapReduce is not suitable to
process fast data

* |s it possible to write a MapReduce-Style
framework to achieve low latency and high
scalability?



Motivating Applications

* An application that monitors Foursquare —
checkin stream to count the number of
checkins per retailer

* Twitter Firehose to detect hot topics as they
occur

* An application maintains a reputation score for
each Twitter user as users tweet

 All these applications perform stream
computations



Why MapReduce is not suitable?

 MapReduce runs on a static snapshot of a
data set, while stream computations proceed
over an evolving data stream

« MapReduce computation has a start and a
finish. Stream computation never end

* |n case of a failure, MapReduce jobs can be
restarted. But stream system should cope with
failures without dragging too far.



Requirements of new framework

» Should be easy to program. Should retain the
familiar Map and Reduce model

* Should manage dynamic data structures as
first class citizens

* Low latency for near real time processing

» Should scale up in with the commodity
hardware



MapUpdate

« MapUpdate operates on data streams. Map
and Update functions should define on data

streams

e Streams never ends. Updaters use slates to
summarize data so far

* Not just a mapper and updater but many of
them in a workflow that consumes streams



Events and Streams

 Eventis a tuple <sid, ts, k, v>
- sid — Stream ID
- ts — Time Stamp
- k — key
- v — value (binary value)



Map Function

map(event) — event®
Subscribes to one or more streams
Receive events ordered by time stamp

Process input streams and emit new events to
one or more streams



Map Sample

public void map(PerformerUtilities submitter,
String stream, bytel]l key, bytell event)
{
String checkin = new String(event, charset);
String venue = getVenue(checkin);

String retailer = null;

if (walmart.matcher(venue) .matches()) {
retailer = "Walmart";

} else if (samsclub.matcher(venue) .matches()) {
retailer = "Sam’s Club";

}

if (retailer != null) {
try {
submitter.publish("S_2",
retailer.getBytes(charset), event);
} catch(Exception e) {
logger.error("Could not publish event: "+
e.toString());



Update Function

» update(event, slate) — event”
* One slate for each key

* Receive data from multiple streams, process
them update slate and emits new events



Update Sample

public void update(PerformerUtilities submitter,
String stream, byte[] key, bytell event,
byte[] slate)

{
int count = 0;
try {
if (=slate != null)

count =
Integer .parselnt(new String(slate, charset));

} catch (NumberFormatException e) {

count = 0;
}
++count;
byte[] updatedSlate =

Integer.toString(count) .getBytes(charset);
submitter.replaceSlate (updatedSlate);



Map Update Application

 Map Update application is a work flow of Map
and Update functions

* Work flow is modeled as a directed graph
(cycles allowed)

- Map and update functions as Nodes
- Streams as Edges

* Use a configuration file to define the flow



Sample Applications

)
% S , _ Foursquare

53 i
Sy ~4 S¢ 5= S,=TCPenney, Walmart, ...
—» —» stream e * : Jatec
TD , @ Slates

53 q JCPenney Walmart
Eﬁj 12 17
(a) (b)
Sp= Twitter S,=v2 9.v3 0.v2 O S,=(v2 9,15).(v3 9,211) S,=v3 0
.‘SHEHH] () - AW TV e w3 - Sadl] S s g wes 4 e

Slates Slateforkeyv3 9
vZ 9 v3 o total count: 2361

3 77 days:13

(c)

Figure 1: Example MapUpdate applications



Muppet System 1.0

Distributed Execution
Managing slates
Handling Failures
Reading slates



Distributed Execution

e Each machine runs a Worker which executes
either a mapper or updater

* Use Hash function to map key to updater to
avoid master

M,

Inputstream ¥ My 1 M,
% M,




Managing Slates

 Uses a key — value store to

- Avoid memory out grow

- Help resuming, restarting, or recovering the
application from crash

- Query the slates

 Use Cassandara on SSD (solid state flash
memory storage) as the key-value store



Handling Failures

e Machine Crash

- When a Node detect a failure it notify that to
master and master notify it to all other
nodes. Failed node removed from hash ring

e Queue Overflow

— |f a workers Queue is full it decline the event

- Sending process can either drop the event or
direct to an overflow stream



Reading Slates

e Uses asmall HTTP server in each node to
retrieve state from slates

 URL contains the updater and key

* Retrieve from updater nodes to get update
copy



Muppet 2.0

 Written in Java and scala

e Each worker is now a thread that can execute
any map or update function

* All threads share same map and update code

» All states are kept in a single central slate
cache

» Allow two workers to process same key



Experience and ongoing extensions

» Limiting Slate Sizes

* Changing the Number of Machines on the Fly
- How to redistribute the load
 Handling hot spots

* Placing Mappers and Updaters
* Bulk reading of states



Questions?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

