

Muppet: MapReduce-Style
Processing of Fast Data

Amila Suriarachchi
Big Data Group

Motivation

● MapReduce has has emerged as a popular
method to process big data

● However MapReduce is not suitable to
process fast data

● Is it possible to write a MapReduce-Style
framework to achieve low latency and high
scalability?

Motivating Applications

● An application that monitors Foursquare –
checkin stream to count the number of
checkins per retailer

● Twitter Firehose to detect hot topics as they
occur

● An application maintains a reputation score for
each Twitter user as users tweet

● All these applications perform stream
computations

Why MapReduce is not suitable?

● MapReduce runs on a static snapshot of a
data set, while stream computations proceed
over an evolving data stream

● MapReduce computation has a start and a
finish. Stream computation never end

● In case of a failure, MapReduce jobs can be
restarted. But stream system should cope with
failures without dragging too far.

Requirements of new framework

● Should be easy to program. Should retain the
familiar Map and Reduce model

● Should manage dynamic data structures as
first class citizens

● Low latency for near real time processing
● Should scale up in with the commodity

hardware

MapUpdate

● MapUpdate operates on data streams. Map
and Update functions should define on data
streams

● Streams never ends. Updaters use slates to
summarize data so far

● Not just a mapper and updater but many of
them in a workflow that consumes streams

Events and Streams

● Event is a tuple <sid, ts, k, v>
– sid – Stream ID

– ts – Time Stamp

– k – key

– v – value (binary value)

Map Function

● map(event) → event*
● Subscribes to one or more streams
● Receive events ordered by time stamp
● Process input streams and emit new events to

one or more streams

Map Sample

Update Function

● update(event, slate) → event*
● One slate for each key
● Receive data from multiple streams, process

them update slate and emits new events

Update Sample

Map Update Application

● Map Update application is a work flow of Map
and Update functions

● Work flow is modeled as a directed graph
(cycles allowed)

– Map and update functions as Nodes

– Streams as Edges

● Use a configuration file to define the flow

Sample Applications

Muppet System 1.0

● Distributed Execution
● Managing slates
● Handling Failures
● Reading slates

Distributed Execution

● Each machine runs a Worker which executes
either a mapper or updater

● Use Hash function to map key to updater to
avoid master

Managing Slates

● Uses a key – value store to
– Avoid memory out grow

– Help resuming, restarting, or recovering the
application from crash

– Query the slates

● Use Cassandara on SSD (solid state flash
memory storage) as the key-value store

Handling Failures

● Machine Crash
– When a Node detect a failure it notify that to

master and master notify it to all other
nodes. Failed node removed from hash ring

● Queue Overflow
– If a workers Queue is full it decline the event

– Sending process can either drop the event or
direct to an overflow stream

Reading Slates

● Uses a small HTTP server in each node to
retrieve state from slates

● URL contains the updater and key
● Retrieve from updater nodes to get update

copy

Muppet 2.0

● Written in Java and scala
● Each worker is now a thread that can execute

any map or update function
● All threads share same map and update code
● All states are kept in a single central slate

cache
● Allow two workers to process same key

Experience and ongoing extensions

● Limiting Slate Sizes
● Changing the Number of Machines on the Fly

– How to redistribute the load

● Handling hot spots
● Placing Mappers and Updaters
● Bulk reading of states

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

