Big Data Research Lab Computer Science Department Colorado State University

1

IMPROVING MAPREDUCE PERFORMANCE IN HETEROGENEOUS ENVIRONMENTS

Feb 13, 2015

Tasks execution in hadoop

2

Big Data Research Lab

September 26, 2014

Hadoop runs several map and reduce tasks concurrently on each slave

In hadoop there are one master and a number of slaves The cluster is divided into fixed number of slots By default, 2 maps and 2 reduces on each slave Empty slot M M R R Slave

Jobs

Master

Assignment order of tasks is as following:

- Failed tasks have the highest priority
- Non-running tasks (locality first)
- Speculative tasks

3

Assigntost

Slave

Slave

M M R R

M M R R

Speculative task?

- 4
- Extra copy of the task running on straggler will be lunched on different machine
- Straggler is a poorly performing node
- The execution of speculative tasks reduces the job execution time
 - Google noticed 44% improvement of job response times

How does hadoop identify the speculative tasks?

- Hadoop uses progress scores to find the slow tasks
 A value between 0 and 1
- For each task that is running for more than one minute
 - Compute the progress score s
 - □ If s < scoreAverage 0.2 then
 - The task is a speculative task

scoreAverage is the average of progress scores of all tasks of of the same task's type (map, reduce)

How the progress scores are computed?

- Progress score of map task is a fraction of read input data
- Progress score of reduce task is the summation of progress scores of its 3 phases

Example of progress score:

- Task halfway through copy phase
- Task halfway through reduce phase

Big Data Research Lab

6

Feb 13, 2015

This works fine in homogeneous environments, but not in heterogeneous

- The assumptions that are made by hadoop and impact its performance in heterogeneous environment:
 - □ The progress rate at each node is the same
 - □ All tasks progress at constant rate
 - Launching speculative tasks on idle slots does not cause extra costs
 - The progress at different reduce phases is considered the same
 - Tasks of the same type require the same amount of work

Hadoop will perform poorly if the assumptions do not hold

- In some cases hadoop's performance will be better when the execution of speculative tasks is disabled
 For example:
 - Yahoo disables speculative execution on some jobs
 - Facebook disables speculation for reduce tasks

The proposed approach

- LATE (Longest Approximate Time to End) scheduler is proposed to schedule speculative tasks
 - To reduce the response time of a map-reduce job
- It schedules only the tasks that hurt the job's response time
- It limits the number of concurrent running speculative tasks
 - So that the execution of other tasks will not be affected

How does LATE find the speculative tasks?

- 10
- Tasks that have the highest impact on the job's response time will be scheduled first
 - That is why scheduling is done based on the remaining time

remainingTime = $\frac{1 - progressScore}{progressRate}$,

 $progressRate = \frac{progressScore}{T}$

Where T is the amount of time the task is running for

Feb 13, 2015

Speculative tasks spend the longest time to finish

- All tasks will be sorted based on their remaining time
- Task having the longest remaining time will be executed first
 - Tasks that hurt the job's response time at most will be executed first

LATE launches only slow tasks on fast node

Algorithm

12

- When a node has idle task, it requests new to execute
- LATE ignores requests coming from nodes whose total progress is below SlowNodeThreshold (25th percentile of node progress)
- LATE launches a copy of the task that has the longest remaining time and is slow

Its progress rate < slowTaskThreshold</p>

Here, data locality is not considered

The estimated finished time can be incorrect

Because LATE assumes that tasks progress at constant rate, the estimated finished time can be incorrect

Running time of sort job on heterogeneous cluster

Conclusion

- LATE can reduce the job's response time by execute limited number of slow tasks on fast machines
- Assuming constant progress rate of the tasks can lead to incorrect estimate of finished time

