
AN OVERVIEW OF 

CARDINALITY ESTIMATION 

ALGORITHMS



Cardinality Estimation

 How many unique elements are in a set?

 In SQL:

 SELECT COUNT(DISTINCT ip_addr) AS Cardinality

 Fine for thousands of records, very slow for billions

 Rather than calculating the exact cardinality, 

estimate it



Cardinality Estimation Goals

 Both online and offline calculation are valid use 

cases

 Memory usage must be controlled

 Especially for online calculation!

 Error rates must be predictable and configurable 

depending on the situation at hand



Use Cases

 A frequent query at Google: how many unique IP 

addresses visited Gmail today?

 How many from Fort Collins, CO?

 In a given range of temperature readings, how 

many were unique?

 If the cardinality of a user’s outgoing connections is 

high, could they be infected with malware?

 How many unique words are in Hamlet?



Algorithms

 Bloom Filter

 Linear Counting

 Probabilistic Counting

 HyperLogLog

 HyperLogLog++



Bloom Filter

 Recall: bloom filters tell us whether an element is a 

member of a set

 False positives possible, no false negatives

 The process:

1. Insert incoming values into our bloom filter

2. If the inserted value is not in the filter, increment the 

cardinality counter

 Much more compact than using a bit vector and 

hash function, at the cost of accuracy



Bloom Filter: Issues

 We need to have an idea of how big our set is 

ahead of time

 Bit vectors are allocated up front

 Difficult to resize (but possible)

 Error rates can fluctuate

 As the number of elements increases, accuracy will 

decrease

 Causes cyclic accuracy levels



Linear Counting

 Allocate a bit vector of M bits

 Adjust M based on the expected upper bound for 

cardinality

 Apply a hash function on incoming elements

 Use the hash value to map to a bit in the vector, and 

set it to 1

 Cardinality = M * log(M/Z);

 Where ‘Z’ is the number of ‘zero bits’



Linear Counting: Implications

 Very accurate for 

small cardinalities

 Becomes less efficient 

as we scale up

 Error is determined by 

frequency of hash 

collisions

 Can be compressed to 

further reduce space



Probabilistic Counting Algorithms

 Assume we have a set of random binary integers

 Inspecting the bits, what is the probability that a 
given integer ends in Z zeroes?

 1 / 2Z 

 10111010 = 50%

 10111100 = 25%

 10011000 = 12.5%

 This means the likely cardinality is 2Z

 Fun fact: counting the number of trailing zeroes in a 
binary number is hardware accelerated



However…

 If you were flipping a coin and told me the longest 

run of ‘heads’ you’ve seen is 3

 I’d assume you weren’t flipping the coin for very long

 Let’s say you sat down and flipped a coin 10 times, 

all landing ‘heads.’

 Apart from possibly indicating a two-headed coin, this 

would cause my “coin flipping time” estimate to be 

waaaaay off

 Besides all this, who counts unique random integers?



HyperLogLog

 Hash incoming values to ‘randomize’ them

 Reference implementation uses a 32 bit hash function

 Instead of just counting trailing (or leading) zeroes, 

maintain a set of registers

 These divide incoming values up into several samples

 Now if I have 10 registers and you flip your two-

headed coin 10 times, I still make an accurate estimate

 Stochastic Averaging

 Average the results across sample sets



HyperLogLog Benefits

 With R registers, the standard error of HLL is:

 1.04/sqrt(R)

 Makes configuration simple

 With an accuracy level of 2%, cardinalities up to 

109 can be calculated with 1.5 KB of memory

 Using this algorithm online is very space-efficient!



Error Consistency



Pitfalls

 After cardinalities of 109, hash collisions become 

more frequent and we lose our tight accuracy 

bounds

 The algorithm does not cope well with small 

cardinalities

 To deal with these issues, Google has introduced 

HyperLogLog++



64 Bit Hash Function

 The hash function in HLL is limited to 32 bits

 This limits us to cardinalities of 109 before collisions 

start to be a problem

 HLL implements special logic to deal with cardinalities 

near 232

 Swapping this with a 64 bit hash instead:

 Results in a small increase in memory usage

 Pushes our upper bound to 264

 Eliminates the edge case logic



Error Rates

 With very small datasets, HLL produces large error 

rates

 “SuperLogLog” attempts to mathematically correct 

this issue

 …with limited success

 Alternative: use Linear Counting for small 

cardinalities

 HLL registers are tweaked slightly to act as linear 

counting bit vectors



Small Cardinality Error Rates



Error Rates: Another Look



Bias Correction

 Linear Counting starts 

consuming too much 

memory before HLL 

hits its usual accuracy 

levels

 Switching over to HLL 

early produces a small 

range of high error 

rates



Bias Correction 1

 Google calculated cardinalities for the 40-80k 

range depicted previously

 Using this empirical dataset, a lookup table 

provides estimates for cardinalities between 40-80k



Bias Correction 2

 Redis takes an alternative approach: polynomial 

regression

 Since the curve is fairly smooth, this allows the bias 

for the 40-80k range to be predicted and 

corrected



Redis Bias Correction



Conclusions

 Cardinality estimation has been an important topic 

in databases since the 70s

 HyperLogLog (2007)

 HyperLog++ (2013)

 Being able to estimate cardinality lets us:

 Estimate other dataset parameters

 Reason about data distributions

 Optimize indexes


