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Abstract— Abstraction of physical hardware using 

infrastructure-as-a-service (IaaS) clouds leads to the simplistic 

view that resources are homogeneous and that infinite scaling is 

possible with linear increases in performance.  Hosting scientific 

modeling services using IaaS clouds requires awareness of 

application resource requirements and careful management of 

cloud-based infrastructure.  In this paper, we present multiple 

methods to improve public cloud infrastructure management to 

support hosting scientific model services.  We investigate public 

cloud VM-host heterogeneity and noisy neighbor detection to 

inform VM trial-and-better selection to favor worker VMs with 

better placements in public clouds.  We present a cpuSteal noisy 

neighbor detection method (NN-Detect) which harnesses the 

cpuSteal CPU metric to identify worker VMs with resource 

contention from noisy neighbors.  We evaluate potential 

performance improvements provided from leveraging these 

techniques in support of providing modeling-as-a-service for two 

environmental science models. 

Keywords Resource Management and Performance; IaaS; 

Virtualization; Multi-Tenancy;  

I. INTRODUCTION 

Public cloud environments abstract the physical hardware 
implementation of resources providing users with only limited 
details regarding the actual physical hardware 
implementations.  This abstraction hides resource 
heterogeneity and restricts users’ ability to make well informed 
deployment decisions based on real knowledge about the state 
of the system.  Resource heterogeneity includes differences in 
the physical hardware used to implement identically named 
resources, and also performance heterogeneity resulting from 
contention for shared CPU, disk, and network resources.  This 
lack of information forces users to rely on the good will of 
cloud hosts to make resource deployments.  But to what degree 
can we assume that cloud hosts will protect users from 
potential performance degradation and increased hosting costs 
resulting from heterogeneous resources?  

Infrastructure-as-a-Service (IaaS) cloud resource 
management challenges can be broken down into three primary 
concerns:  (1) Determining WHEN infrastructure should be 
provisioned? (2) Determining WHAT infrastructure should be 

provisioned? and (3) Determining WHERE infrastructure 
should be provisioned?   

Determining WHAT server infrastructure to provision for 
application hosting concerns two dimensions: type of resources 
(vertical sizing), and quantity (horizontal sizing) of virtual 
machines (VM) resources.  Vertical sizing involves selecting 
the appropriate resource configuration “type” considering: the 
required number of CPU cores, memory allocation, disk 
capacity, and network bandwidth.  On public clouds such as 
Amazon EC2, specific VM resource configurations are known 
as “instance types”.  Each instance type, for example m3.large 
or c3.xlarge, describes a given VM configuration with a fixed 
amount of RAM, hard disk space, and network bandwidth.  
Horizontal sizing involves determining the appropriate quantity 
of VMs for workload hosting and then load balancing the 
workload across this VM pool. Instance types such as the 
Amazon EC2 m1.large VM have several physical 
implementations and research has demonstrated a 30% 
performance variance for web application hosting [1] [2].   

WHERE server resources are provisioned within a specific 
datacenter is abstracted by IaaS clouds.  Representing VMs as 
tuples and using them to pack physical machines (PMs) can be 
thought of as an example of the multidimensional bin-packing 
problem shown to be NP-hard [3].  In public cloud settings, 
VM placement is abstracted and difficulty to discern [4].  
Previous efforts using heuristics to infer VM co-residency by 
launching probe VMs for exploration can be expensive and 
only partially effective at determining VM locations [5] [17] 
[18] [19] [20].  Public clouds do support features including 
Virtual Private Clouds (VPCs) and “placement groups” to 
ensure locality of VM placements for application hosting.  
These features help ensure data center and rack locality for 
application VMs. – but they do not ensure resource quality.  
Though application resource placements are localized, the 
physical hosts may be overprovisioned, or host “noisy 
neighbor” VMs, resource hungry VMs which consume an 
unusual share of CPU, disk, or network resources.  This 
resource contention has been shown to degrade performance of 
scientific applications hosted in public clouds [4] [6]. 

In this paper, we investigate the performance implications 
of public cloud infrastructure abstraction for hosting scientific 
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modeling web services to provide scientific “modeling-as-a-
service” for ubiquitous clients.  Specifically, we investigate the 
implications of WHAT infrastructure gets provisioned (resource 
implementation), and WHERE this infrastructure is provisioned 
(resource state).  We first quantify performance degradation 
resulting from public cloud resource type heterogeneity 
(WHAT), and second from resource contention (WHERE).  We 
benchmark the performance by hosting two US Department of 
Agriculture environmental modeling web service applications 
on Amazon’s public EC2 cloud.  Secondly, we propose two 
approaches which help mitigate this performance degradation 
through intelligent public cloud resource provisioning.  

A. Research Questions 

We investigate the following research questions: 

RQ-1: How common is public cloud VM-type 
implementation heterogeneity?   

RQ-2: What performance implications result from this 
heterogeneity for hosting web services application 
workloads?  

RQ-3: How effective is cpuSteal at identifying worker VMs 
with high resource contention due to multi-tenancy 
(e.g. noisy neighbor VMs) in a public cloud? 

RQ-4: What are the performance implications of hosting 
scientific modeling workloads on worker VMs with 
consistently high cpuSteal measurements in a public 
cloud?   

CpuSteal provides a processor metric that helps quantify 
overprovisioning of the physical hardware.  When a VM CPU 
core is ready to execute but the physical host CPU core is 
unavailable because it is performing other work, a CpuSteal 
tick is registered.  Herein we describe our investigation on the 
feasibility of harnessing this CPU metric to identify resource 
contention from overprovisioned hosts in public clouds. 

B. Contributions 

This paper reports on our case study which develops and 
applies two approaches to improve performance of service 
oriented workloads hosted using public clouds. The primary 
contributions of this paper include: 

1. We investigate the prevalence of resource contention 
among VMs on a shared host using the cpuSteal CPU 
metric.  We measure cpuSteal for several hours while 
running compute intensive workloads across eight-
different VM types from Amazon’s EC2 cloud.  We 
develop an approach called Noisy-Neighbor-Detect 
(NN-Detect) which harnesses the cpuSteal metric to 
identify resource contention from noisy neighbor VMs 
running in a shared cluster.  Using this approach we 
identify VMs which exhibit degraded performance 
from resource contention, and quantify the potential 
impact on application performance for hosting USDA 
scientific model-as-a-service workloads.  

2. We investigate the prevalence of host heterogeneity for 
12 VM-types spanning 3 generations in 2 regions on 
Amazon’s EC2 cloud.  We apply the trial-and-better 

approach described in [1] to create VM pools with 
fixed VM implementations with a given CPU type. We 
quantify the implications for average service execution 
time for USDA model-as-a-service workloads from 
heterogeneous VM type implementations. 

II. BACKGROUND AND RELATED WORK 

A. Scientific Modeling on Public Clouds 

Ostermann et al. provided an early assessment of public 
clouds for scientific modeling in [7].  They assessed the ability 
of 1st generation Amazon EC2 VMs (e.g. m1.*-c1.*) to host 
HPC-based scientific applications.  They identified that EC2 
performance, particularly network latency, required an order of 
magnitude improvement to be practical and suggested that 
scientific applications should be tuned for operation in 
virtualized environments.  Other early efforts highlighted 
similar challenges regarding performance for HPC applications 
[8] [9] [10].  To increase ubiquity of scientific models and 
applications, and to support dissemination of research, many 
organizations now build and host scientific web services [11] 
[12].  The Cloud Services Integration Platform (CSIP), a Java-
based programming framework, has been developed by 
Colorado State University in cooperation with the US 
Department of Agriculture. CSIP supports development and 
deployment of web services for a number of USDA scientific 
modeling applications implemented in languages such as C, 
FORTRAN, Python, and others.  Infrastructure-as-a-Service 
cloud computing offers an ideal platform for CSIP services 
which mix legacy code with modern framework 
instrumentation to provide modeling-as-a-service, on demand, 
to diverse client applications [13] [14]. 

B. Public Cloud Resource Contention Detection 

Schad et al. [6] demonstrated the unpredictability of 
Amazon EC2 VM performance caused by contention for 
physical machine resources and provisioning variation of VMs.  
More recently researchers have developed techniques to 
identify resource contention from coresident VMs running on 
shared hardware [15] [16] [17] [18] [19] [20].   

Mukherjee et al. developed a software-based resource 
contention probe based on techniques not specific to hardware 
or OS specific counters to provide a more portable technique 
[17].  They monitored TCP/IP connection rates and memory 
contention from cache misses, but their work was restricted to 
a small private cluster.  Novakovic et al. developed a multi-
level approach for detecting and mitigating resource contention 
in private clusters [18].  They used an initial lightweight 
warning detector to infer potential contention which would 
trigger a more complex inference analyzer to perform in depth 
analysis.  Their inference analyzer predicts whether VM 
migration can alleviate resource contention by predicting 
system load after migration, as well as where VMs should 
migrate.   Zhang et al. and Varadarajan et al. both exploit side 
channels to help determine coresidency of VMs, work done 
from the perspective of demonstrating how cloud systems are 
potentially insecure.  Zhang et al. developed a single and multi-
probe classifier which was quite successful at detecting co-
located VMs [19].  However, their approach required kernel 
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modifications, extensive benchmarking and training, and 
doesn’t work in a virtual private cloud (VPC) configuration 
where VMs run on isolated VLANs behind a firewall.  
Varadarajan et al. used a side channel requiring less analysis, 
by performing atomic addition across a CPU cache-line 
boundary, to detect co-located VMs on the Google Compute 
Engine, Amazon EC2, and Microsoft Azure public clouds [20].  
Though novel and effective at detecting VM coresidency a 
potential security concern, their approach does not detect 
resource contention among coresident VMs.   

Liu offers a novel approach to characterize CPU utilization 
across a public cloud by analyzing CPU temperature [16].  
Liu’s approach averages thermal measurements of the CPU 
from small VMs which are context switched across the 
physical host’s CPU cores for extended periods to approximate 
CPU die temperature which correlates with CPU utilization.  
Using this approach Liu observed CPU utilization using 20 
m1.small VMs on Amazon EC2 in 2011 for 1 week and 
estimated average CPU utilization to be around 7.3%.  Liu did 
not consider if temperature can help detect resource contention 
and application performance degradation.   

A few efforts have looked at using cpuSteal to detect 
contention among VMs [15] [21].  Casale et al. considered the 
use of cpuSteal to look for contention between hyperthreads of 
the same CPU-core using private servers [21].  Ayodele et al. 
demonstrated a link between application performance and 
cpuSteal using SPEC CPU2006 benchmarks [15].  They 
verified this link on both a private cluster and with the 
m3.medium Amazon EC2 VM type.  This effort did not further 
develop the cpuSteal-performance link into a mechanism to 
support contention avoidance and performance improvement. 

C. Public Cloud Heterogeneity 

Farley et al. demonstrated that Amazon EC2 instance types 
had heterogeneous hardware implementations in [2].  Their 
investigation focused on the m1.small instance type and 
demonstrated potential for cost savings by discarding VMs 
with lower performance CPUs.  Ou et al. extended their work 
by demonstrating that heterogeneous implementations impact 
several Amazon and Rackspace VM types [1].  They found 
that the m1.large EC2 instance had four different hardware 
implementations (variant CPU types) and different Xen CPU 
sharing configurations.  They demonstrated ~20% performance 
variation on operating system benchmarks for m1.large VM 
implementations.  This technique enabled the development of a 
“trial-and-better” approach where the backing CPU type of 
VM instances upon launch are checked, and those with lower 
performing CPU types are terminated and relaunched.  This 
technique provided cost savings through performance 
improvements when using m1.large EC2 instances for 10 or 
more hours. 

III. SCIENCE APPLICATIONS 

To study public cloud performance implications from noisy 
neighbor VMs and resource type heterogeneity, we harnessed 
two environmental modeling services implemented using the 
Cloud Services Integration Platform (CSIP) framework 
[13][14].  CSIP provides a common REST/JSON Java-based 

programming framework supporting the development of web 
services hosted using web containers such as Apache Tomcat 
[29].  CSIP has been developed by Colorado State University 
and the US Department of Agriculture (USDA) to support 
environmental modeling web service development.   

We investigated implications for scaling workloads for two 
soil erosion models: the Revised Universal Soil Loss Equation 
– Version 2 (RUSLE2) [22], and the Wind Erosion Prediction 
System (WEPS) [23].  RUSLE2 focuses on modeling soil 
erosion due to rainfall and runoff, while WEPS predicts soil 
erosion due to wind.  Both model services represent diverse 
applications with varying computational requirements.  
RUSLE2 and WEPS represent the US Department of 
Agriculture–Natural Resource Conservation Service agency 
standard models used by over 3,000 county level field offices 
across the United States to predict soil erosion.  RUSLE2 
models soil erosion primarily by parameterizing the RUSLE 
equation, whereas WEPS is a daily process-based simulation 
model.  

RUSLE2 was originally developed as a Windows-based 
Microsoft Visual C++ desktop application.  WEPS was 
originally developed as a desktop Windows application using 
Fortran95 and Java.  The RUSLE2 and WEPS services require 
legacy language support, a mixture of Linux and Windows 
support, as well as relational, geospatial, and NoSQL 
databases.  RUSLE2 and WEPS model service components are 
described in Table I.  IaaS cloud computing is key to providing 
the infrastructure required to provide RUSLE2 and WEPS as 
scalable web services.   

 

Fig. 1: RUSLE2 vs. WEPS 
Model Execution Time Quartile Box Plot 

RUSLE2 and WEPS have distinctly different workload 
profiles.  A box plot depicts the average service execution 
times for RUSLE2 and WEPS in Figure 1.  Average cpuUser, 
cpuKernel, and cpuIdle time for cloud hosted workloads are 
shown in Figure 2 with RUSLE2 (37.8% | 7.1% | 54.9%) vs. 
WEPS (83.8% | 4.2% | 12.0%).  CpuIdle is time spent waiting 
for disk or network I/O operations to complete, or time spent 
performing context switches where the CPU does not actively 
execute instructions.  The RUSLE2 model executes quickly as 
the model primarily parametrizes the RUSLE equation.  
Parameterization involves mostly I/O, while the model run is 

Identify applicable sponsor/s here. If no sponsors, delete this text box 
(sponsors). 
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computationally simple.  Conversely, WEPS is a CPU-bound 
process based simulation model which runs for at least 30-
years using a daily time step.  Their diversity makes RUSLE2 
and WEPS good candidates to benchmark cloud infrastructure 
performance.  

 

Fig. 2: RUSLE2 vs. WEPS CPU Profile 
Comparison of: Kernel time, User mode time, Idle time 

TABLE I.  RUSLE2/WEPS APPLICATION COMPONENTS 

Component RUSLE2 WEPS 

M Model Apache Tomcat, Wine 1, 
RUSLE2 [22], CSIP 
[13]  

Apache Tomcat, WEPS 
[23], CSIP [13] 

D Database Postgresql, PostGIS, 
soils data (1.7 million 
shapes), management 
data (98k shapes), 
climate data (31k 
shapes), 4.6 GB total  

Postgresql, PostGIS, 
soils data (4.3 million 
shapes), climate/wind 
data (850 shapes), 17GB 
total. 

F File server nginx file server, 
57k XML files (305MB), 
parameterizes RUSLE2 
model runs.  

nginx file server, 291k 
files (1.4 GB), 
parameterizes WEPS 
model runs.   

L Logger Redis distributed cache 
server 

Redis distributed cache 
server 

 

    To load balance model service requests we used HAProxy, 

a high performance load balancer [8], to redirect modeling 

requests across the active pool of M worker VMs.  HAProxy, 

installed on a PM, provides public service endpoints. 

IV. THE VIRTUAL MACHINE SCALER 

To investigate infrastructure management techniques and 
support hosting of scientific modeling web services we 
developed the Virtual Machine (VM) Scaler, a REST/JSON-
based web services application [24].  VM-Scaler harnesses the 
Amazon EC2 API to support application scaling and cloud 
management and currently supports Amazon’s public elastic 
compute cloud (EC2), and Eucalyptus 3/4 clouds.  VM-Scaler 
provides cloud control while abstracting the underlying IaaS 
cloud and is extensible to any EC2 compatible cloud.  VM-
Scaler provides a platform for conducting IaaS cloud research 
by supporting experimentation with hotspot detection schemes, 

VM management/placement, job scheduling, and load 
balancing of service requests. VM-Scaler supports horizontal 
scaling of application infrastructure by provisioning VMs when 
application hotspots are detected, similar to Amazon auto-
scaling groups [25]. 

 Upon initialization VM-Scaler probes the host cloud and 
collects metadata including location and state information for 
all PMs and VMs.  An agent installed on all VMs/PMs sends 
resource utilization statistics to VM-Scaler at fixed intervals.  
Collected resource utilization statistics are described in 
[26][27]. Our development of VM-Scaler extends and enables 
this prior work investigating the use of resource utilization 
statistics to guide cloud application deployment. 

VM-Scaler supports creation of virtual machine pools to 
support scaling and management of VMs hosting a specific tier 
of an application.  Pools are defined using JSON files and can 
be created using dedicated or spot instances on Amazon EC2.  
VM-scaler supports managing a pool as a cohesive unit with 
functions to execute a command or deploy new data across all 
of the members of a pool in parallel.  Pool management also 
includes enforcement of VM type heterogeneity.  The 
forceCpuType attribute specifies the desired backing CPU type 
in Amazon’s public cloud.  When a pool is created, non-
matching VMs are immediately terminated and replaced until 
an entire pool of matching VMs is created.  This way it is 
possible to filter out heterogeneous VM types and ensure 
homogeneity of the backing CPU in a manner similar to the 
“trial-and-better” approach [1].    

VM-Scaler supports profiling the resource requirements of 
distributed cloud workloads running across a set of VM-scaler 
managed VMs [28].  A resource utilization sensor is installed 
on each VM to send resource utilization data to the central 
VM-Scaler web service at an adjustable interval.  By 
harnessing the Linux network time protocol (ntp) resource 
sampling can be synchronized across a pool to a resolution of 
1-second.  This supports collection of accurate workload 
profiles for workloads running across large VM pools.  In this 
paper, we exercise this feature using pools with up to 60 VMs 
to collect cpuSteal statistics.  VM-scaler workload profiling is 
similar to Amazon CloudWatch metrics except our 
implementation supports sampling at a 1-second resolution for 
free vs. 60-seconds with CloudWatch.  VM-scaler provides 
raw profiling data for researcher consumption to analyze 
performance and build models. 

V. HETEROGENEITY OF VM IMPLEMENTATIONS 

A. Background and Methodology 

Previous research has demonstrated that hardware 
implementations of public cloud VM types change over time 
[1] [2].  Today, Amazon still hosts the original first generation 
instance types initially offered in 2007.  As the original server 
hardware has long since been retired, new hardware was tasked 
with providing the equivalent VM types.  This hardware 
replacement has led to a variety of implementations in Amazon 
EC2, especially for older generation VM types.  Several 
hardware implementations of the same VM type may be 
offered at once, each with different performance 
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characteristics.  When hosting scientific modeling workloads 
on public clouds we are interested in understanding the 
performance implications of VM type heterogeneity.  Can we 
exploit this heterogeneity to improve performance of scientific 
modeling workloads?   

To investigate implications of VM host heterogeneity, VM-
Scaler provides host CPU type enforcement as described 
earlier using the “forceCpuType” attribute. CPU type 
enforcement incurs the additional expense of launching and 
terminating unmatching VM instances.  In Amazon EC2, 
discarded VMs are billed for 1-hour of usage; we used EC2 
spot instances to minimize these costs.   

B. Experimental Setup  

In [1], VM host heterogeneity is observed for m1.small, 
m1.large, and m1.xlarge VMs across all Amazon EC2 east 
subregions.  To extend earlier work, we tested host 
heterogeneity for 12 VM types: 1st generation VM types 
(m1.medium, m1.large, m1.xlarge, c1.medium, c1.xlarge), 2nd 
generation types (m2.xlarge, m2.2xlarge, and m2.4xlarge), and 
3rd generation types (c3.large, c3.xlarge c3.2xlarge, m3.large).  
To investigate the prevalence of VM-host heterogeneity (RQ-
1) we first launched 50 VMs for each of the 12 VM types.  
When heterogeneity was detected, we launched 50 more VMs 
for a total of 100.  Tests were performed using two Amazon 
regions: us-east-1c and us-east-1d.  Host heterogeneity was 
determined by VM-Scaler by inspecting Linux’s /proc/cpuinfo 
proc-file.   

To quantify the effect of host heterogeneity on model 
service performance (RQ-2), we studied the two VM types 
exhibiting the highest degree of heterogeneity.  We completed 
batch model service workloads using WEPS and RUSLE2 on 
pools of 5 VMs for each implementation type.   We performed 
10 trials of 100 WEPS runs, and 10 trials of 660 RUSLE2 runs 
using these implementation-specific pools to compute average 
model service execution time.  

We did not investigate VM host heterogeneity for very 
small VMs which do not receive 100% of a full CPU core 
allocation such as the bursting VMs (e.g. t1.small) and 1-core 
VMs (e.g. m1.small, m3.medium).  These VM types provide 
minimal throughput for service hosting. 

TABLE II.  AMAZON VM HOST HETEROGENEITY 

VM type Region Backing CPU Backing CPU 

m1.medium us-east-1c 
Intel E5-2650 v0 

8c,95w,96% 

Intel Xeon E5645 

6c,80w,4% 

m2.xlarge us-east-1c 
Intel Xeon X5550 

4c, 95w, 48% 

Intel Xeon E5-2665 v0 

8c, 115w, 42% 

m1.large us-east-1d 
Intel Xeon E5-2650 v0 

8c,95w,74% 

Intel Xeon E5-2651 v2 

12c,105w,19% 

m1.large us-east-1d 
Intel Xeon E5645 

6c,80w,7% 
-- 

m2.xlarge us-east-1d 
Intel Xeon E5-2665 v0 

8c, 115w,78% 

Intel Xeon X5550 

4c, 95w, 22% 

C. Experimental Results 

We tested 12 VM types across 3 generations, and found 
significant VM host heterogeneity for 3 of the types (25%) 

from 2 generations while testing on two different Amazon 
regions (us-east-1c and us-east-1d).  We discovered 7 
implementations of these 3 VM types.  On average, a given 
hardware configuration was found to support 43.3% of the VM 
instances for the m1.medium, m1.large, and m2.xlarge VM 
types as described in Table II.  Five different Intel CPUs 
spanning two microarchitectures and four different sets of 
microcode were found to provide these implementations.  We 
found that m1.large VMs were implemented with CPUs from 
two different Intel microarchitecture generations (Nehalem and 
Sandy Bridge) and three different microcode releases 
(Nahalem, Westmere, and Ivy Bridge).  This hardware 

heterogeneity is almost certain to provide variable 
performance under the label “m1.large”. 

Our tests revealed implementation host heterogeneity for 
1st and 2nd generation VMs.  Where we did not observe VM-
host heterogeneity this does not imply it doesn’t exist, nor does 
it imply if it will exist in the future.  As CPUs continue to 
evolve, and legacy hardware ages, we suspect to see host 
heterogeneity for 3

rd
, 4

th
 and future VM generations.  Migration 

to core dense, lower power CPUs in cloud data centers stands 
to save energy and lower datacenter costs for all public cloud 
providers.  

Compared to Ou et al.’s results [1], we observed that some 
CPU types  found in 2011 and 2012 have been replaced with 
lower power, core-dense CPUs.  For example we observed 
m1.xlarge VM implementations using the 12-core Intel Xeon 
E5-2651 CPU.  Higher core density CPUs should help save 
energy, and reduce resource contention, while enabling server 
real estate to expand.  Previously m1.large VMs implemented 
using AMD Opteron’s consumed as much as 42.5 watts per 
core! Implementations using the Intel Xeon E5-2651 v2 require 
only 8.75 watts per core.  This amounts to just ~20% of the 
previous power requirement.   

 

Fig. 2. Normalized Model Service Execution Time  
with Heterogeneous VM Implementations 

Model service performance implications are shown in 
figure 2.  For the m1.large VM implementations, model 
performance was slower when the VM was backed by the Intel 
Xeon E5-2650-v0.  Average normalized execution time was 
108% for RUSLE2, and 109% for WEPS versus VMs backed 
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by the Intel Xeon E5645 CPU.  For the m2.xlarge VM 
implementations, model performance was slower when the VM 
was backed with the Intel Xeon E5-2665-v0.   Average 
normalized execution time was 114% for RUSLE2, and 104% 
for WEPS versus VMs backed by the older Intel Xeon X5550.  
Ironically, newer CPUs provided lower performance than their 
legacy counterparts in both cases. 

VI. IDENTIFYING RESOURCE CONTENTION WITH CPUSTEAL  

A. Background  

Resource contention in a public cloud can lead to 
performance variability and degradation in a shared hosting 
environment [4] [6].  CpuSteal registers processor ticks when a 
VM’s CPU core is ready to execute but the physical host CPU 
core is busy performing other work.  The core may be 
unavailable because the hypervisor (e.g. Xen dom0) is 
executing native kernel mode instructions, or user mode 
instructions for other VMs.  High cpuSteal time can be a 
symptom of over provisioning of the physical servers hosting 
VMs.  On the Amazon EC2 public cloud, which uses a variant 
of the Xen hypervisor, we observe a number of factors that 
produce CpuSteal time.  These include: 

1. Processors are shared by too many VMs, and those 
VMs are busy. 

2. The hypervisor kernel (Xen dom0) is occupying the 
CPU. 

3. The VM’s CPU time share allocation is less than 
100% for one or more cores, though 100% is needed 
to execute a CPU intensive workload.  

In the case of 3, we observe high cpuSteal time when 
executing workloads on Amazon EC2 VMs which under 
allocate CPU cores.  A specific example is the m1.small and 
m3.medium VMs.  We observed that the m3.medium VM type 
is allocated approximately 60% of a single core of the 10-core 
Xeon E5-2670 v2 CPU at 2.5 GHz.  Consequently even an idle 
m3.medium VM produces cpuSteal.  This observation explains 
the high cpuSteal values for m3.medium VMs studied in [15].  
Because of this under allocation, all workloads executing at 
100% on m3.medium VMs exhibit high cpuSteal because they 
must burst and use unallocated CPU time to reach 100%.  
These burst cycles are granted only if they are available, 
otherwise cpuSteal ticks are registered.   

B. CpuSteal Noisy Neighbor Detection Method 

Noisy neighbors are busy, co-located VMs that compete for 
resources that can adversely impact performance.  We 
investigate the utility of using cpuSteal to detect resource 
contention from these “noisy neighbors” VMs using the 
Amazon EC2 public cloud.  We use the CSIP-WEPS modeling 
service which features an average CPU utilization of 88% to 
detect Noisy Neighbors.  We propose and investigate the use of 
the following “CpuSteal Noisy Neighbor Detection method” 
(NN-Detect): 

Step 1. Execute a processor intensive batch workload across 

a pool of worker VMs several times. (WEPS) 

 

Step 2. For each batch run, capture cpuSteal for each worker  

 VM for the duration of the workload. 

 

Step 3. Calculate the average and standard deviation of 

cpuSteal across the VM pool for the batch runs. 

(cpuStealavg). 

 

Step 4. Identify the presence of noisy neighbor VMs by 

applying application agnostic and application specific 

thresholds to VM cpuSteal averages. 

 

To detect when noisy neighbors share the same physical hosts, 
we screened for outliers using the application agnostic 
threshold: 

cpuStealvm ≥ cpuStealavg + (2 ∙ stdev) 

To classify as having noisy neighbors we applied a second 
threshold: 

cpuStealvm ≥ 10 ticks 

When a worker VM has fewer than 10 cpuSteal ticks this is 
considered too low to discern from noise.  In these instances, 
this minor amount of resource contention, potentially from the 
hypervisor, is deemed insignificant and too low to degrade 
application performance.  We validated these application 
agnostic thresholds by benchmarking representative workloads 
and qualitatively observing relationships between WEPS 
model performance and cpuSteal.  Our approach using 
CpuSteal does not require the use of separate probe VMs as in 
[17] as workload execute and profiling occur simultaneously 
on the same VMs.  We describe the results of our evaluation of 
NN-Detect using the WEPS model as the computational 
workload below. 

C. Experimental Setup 

To investigate the utility of cpuSteal for detecting resource 
contention from VM multi-tenancy (RQ-3) we evaluated NN-
Detect using WEPS model service batch workloads as it is 
more CPU bound than RUSLE2 (figure 2).  For step 1, we ran 
WEPS batch workloads on the VM pools described in table III.  
To enforce hardware homogeneity of our test environment we 
used the “forceCpuType” attribute of VM pools supported by 
VM-Scaler to guarantee every VM would be implemented with 
the same backing CPU.  We launched 50 VMs for each VM 
type listed in table III, except for the 8-core c1.xlarge (25 
VMs), and the 1-core m1.medium and m3.medium (60 VMs).  
We repeated 4 batch runs of approximately 1,000 randomly 
generated WEPS runs.  Model runs were distributed evenly 
using HAProxy round-robin load balancing across all VMs in 
the pool.    The 4 batch runs required a total of approximately 5 
hours to complete. 

For step 2, we totaled individual VM cpuSteal ticks for 
each VM in the worker pools for each WEPS batch job.  For 
step 3, we calculated the average and standard deviation of 
cpuSteal for every VM across batch runs.  We then looked for 
patterns in cpuSteal behavior for each of the 9 different VM 
pools from Table III.  For step 4, we applied the thresholds 
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described above using data from step 3 to identify VMs with 
noisy neighbors.  To measure the performance implications of 
noisy neighbors (RQ-4) we created sub-pools of 5 VMs using 
the existing VMs.  One sub-pool consisted of 5 VMs where 
cpuSteal exceeded the noisy-neighbor thresholds (step 4), and 
the other was 5 randomly selected VMs that did not exceed 
thresholds.  We then completed 10 batches of 100 WEPS runs, 
and 10 batches of 660 RUSLE2 runs to compare performance. 

D. Experimental Results 

To address (RQ-3) we compared individual VM cpuSteal 
values from each batch run and used linear regression to test if 
one batch’s cpuSteal behavior could predict cpuSteal for future 
batch runs.    Statistically we wanted to know how much 
variance is explained by comparing individual VM cpuSteal 
values across batch runs. The averaged R

2
 values from these 

comparisons appear in table IV.  R
2
 is a measure of prediction 

quality that describes the percentage of variance explained by 
the regression.   The important discovery here is that over 5-
hours, early observations of cpuSteal were helpful to predict 
the future presence of cpuSteal!  Using this approach we can 
detect resource contention patterns that persist.  We observe 
predictable patterns of VM cpuSteal behavior using Amazon 
EC2 for 4 VM types (m1.large, m2.xlarge, m1.xlarge, 
m1.medium) at (R

2
 > .44), and as high as R

2
=.94 for m1.xlarge.   

To evaluate (RQ-4) we next calculated average and 
standard deviation scores of cpuSteal for the VM pools to 
determine threshold values to identify worker VMs with noisy 
neighbors.  When no worker VMs exceeded these thresholds 
for a given type (e.g. c3.large), cpuSteal was not useful at 
detecting potential performance degradation from noisy 
neighbors.  Table III shows the “% Noisy Neighbors” 
identified by NN-Detect.  VMs without noisy neighbors tended 
to be hosted on physical hosts backed by higher density 10 and 
12-core CPUs. (e.g. c3.large, m3.large, m3.medium, c1.xlarge).  
Modern 10 and 12-core Intel Xeon CPUs all feature hyper 
threading and new servers often utilize 2 or 4 CPUs per server.  
By increasing the number of available hyper threads in a dual-
CPU server from 16 (X5550) to 48 (E5-2651) the likelihood of 
resource contention from multi-tenancy should drop to ¼ of the 
original amount.  Such advances in hardware should help 
mitigate public cloud resource contention until demand 
increases to consume this additional capacity. 

We applied NN-detect thresholds to create two mini-pools 
of 5 VM each.  One pool consisted of VMs with noisy 
neighbors identified using NN-detect, and the other pool were 
randomly chosen worker VMs without noisy neighbors.  We 
compared the performance of these mini-pools by executing 
WEPS and RUSLE batch runs as described earlier.  The 
observed performance degradation for model service execution 
time with noisy neighbor VMs is shown in table IV.  
Performance is normalized vs. VM pools without noisy 
neighbors to show the increase in execution time resulting from 
noisy neighbors.  Across 4 VM-types we observe average 
performance degradation up to 18% for WEPS and 25% for 
RUSLE2 using m1.large VMs.  Three VM types (m1.large, 
m2.xlarge, m1.medium) produced statistically significant (p > 
.05) performance degradation for the repeated batch runs.  The 
average performance degradation for RUSLE2 and WEPS 

model services for execution on VM pools with noisy 
neighbors was 9% across all tests. 

TABLE III.  AMAZON EC2 CPUSTEAL ANALYSIS 

VM type Backing  

CPU  

Average R2 

linear reg. 

Average 

cpuSteal 

per core 

% with 

Noisy 

 Neighbors 

us-east-1c 

c3.large-2c E5-2680v2/10c .1753 2.35 0% 

m3.large-2c E5-2670v2/10c - 1.58 0% 

m1.large-2c E5-2650v0/8c .5568 15.24 10% 

m2.xlarge-2c X5550/4c .4490 953.25 6% 

m1.xlarge-4c E5-2651v2/12c .9431 29.01 4% 

m3.medium-1c E5-2670v2/10c .0646 17683.21 n/a 

c1.xlarge-8c E5-2651v2/12c .3658 1.86 0% 

us-east-1d 

m1.medium-1c E5-2650v0/8c .4545 6.2 7% 

m2.xlarge-2c E5-2665v0/8c .0911 3.14 0% 
1
 LESS THAN 100% CPU CORE ALLOCATION PRODUCES SIGNIFICANT CPUSTEAL 

TABLE IV.  EC2 NOISY NEIGHBOR MODEL SERVICE 
PERFORMANCE DEGRADATION

1 

VM type Region WEPS RUSLE2 

m1.large 

E5-2650v0/8c 

us-east-1c 117.68% 

df=9.866 

p=6.847·10-8 

125.42% 

df=9.003 

p=.016 

m2.xlarge 

X5550/4c 

us-east-1c 107.3% 

df=19.159 

p=.05232 

102.76% 

df=25.34 

p=1.73·10-11 

m1.xlarge 

E5-2651v2/12c 

us-east-1c 100.73% 

df=9.54 

p=.1456 

102.91% 

n.s. 

m1.medium 

E5-2650v0/8c 

us-east-1d 111.6% 

df=13.459 

p=6.25·10-8 

104.32% 

df=9.196 

p=1.173·10-5 
1
 NORMALIZED MODEL SERVICE PERFORMANCE FOR WORKER VMS IS 100%. 

 

To summarize our key findings: (1) a complete set of 
WEPS batch runs required up to 5 hours to complete.  
Throughout this time, trends in cpuSteal remained consistent to 
produce statistically significant model service performance 
degradation shown in table IV.  And, (2) in cases where 
cpuSteal did not identify resource contention from noisy 
neighbors, it likely did not exist.  In these cases the host 
hardware tended to be more core-dense.  To conclude, our 
results suggest that resource contention and application 
performance degradation is more likely in public clouds when 
VMs are hosted using hardware with fewer CPU cores.   

VII. CONCLUSIONS 

Public cloud environments abstract the physical hardware 
implementation of resources providing users with limited 
details regarding the actual physical cluster implementations.  
For public cloud hosting of model services, the trial-and-better 
approach can improve model service performance and lower 
hosting costs.  We tested 12 VM-types provided by Amazon 
EC2 and found that 25% of the types had more than one 
hardware implementation.  (RQ-1) By leveraging the trial-and-
better approach in VM-scaler we demonstrated potential for a 
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14% RUSLE2 model performance improvement (m2.xlarge) 
and 9% WEPS performance improvement (m1.large) by 
harnessing VM-host heterogeneity (RQ-2).  

We developed an approach to find noisy neighbor VMs in a 
public cloud which cause unwanted resource contention by 
harnessing the cpuSteal CPU metric (NN-detect). We tested 
9VM types across 2 regions in Amazon EC2 and found that 4 
VM types had VMs which were able to measure increased 
levels of cpuSteal which persisted over several hours (RQ-3).  
We applied our NN-detect method to isolate pools of VMs 
with and without resource contention from noisy neighbors to 
measure performance degradation.  Running batch workloads 
on pools consisting of VMs with high resource contention 
produced model service performance degradation up to 18% 
for WEPS and 25% for RUSLE2 (RQ-4). 

Abstraction of physical hardware using IaaS clouds leads to 
the simplistic view that cloud resources are homogenous and 
that scaling will infinitely provide linear increases in 
performance because all resources are identical.  Our results 
demonstrate how trial and better evaluation of VMs in public 
clouds can help mitigate both resource contention and address 
hardware heterogeneity to deliver performance improvements.  
We quantify the extent of hardware heterogeneity and resource 
contention in Amazon EC2’s public cloud, and quantify 
performance implications for service-oriented application 
workloads. Our results provide simple and promising 
techniques that can be leveraged to improve workload 
performance leading to potential for cost savings in public 
clouds. 
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