
1

Mitigating Resource Contention and Heterogeneity in

Public Clouds for Scientific Modeling Services

Wes Lloyd

Institute of Technology

University of Washington

Tacoma, Washington USA

wlloyd@uw.edu

Shrideep Pallickara
1
, Olaf David

1,2
,

Mazdak Arabi
2

1
Department of Computer Science

2
Dept. of Civil and Env. Engineering

Colorado St. Univ., Ft. Collins, USA

shrideep.pallickara, olaf.david,

mazdak.arabi@colostate.edu

Ken Rojas

USDA-Natural Resource

Conservation Service

Fort Collins, Colorado USA

Ken.Rojas@ftc.usda.gov

Abstract— Abstraction of physical hardware using

infrastructure-as-a-service (IaaS) clouds leads to the simplistic

view that resources are homogeneous and that infinite scaling is

possible with linear increases in performance. Hosting scientific

modeling services using IaaS clouds requires awareness of

application resource requirements and careful management of

cloud-based infrastructure. In this paper, we present multiple

methods to improve public cloud infrastructure management to

support hosting scientific model services. We investigate public

cloud VM-host heterogeneity and noisy neighbor detection to

inform VM trial-and-better selection to favor worker VMs with

better placements in public clouds. We present a cpuSteal noisy

neighbor detection method (NN-Detect) which harnesses the

cpuSteal CPU metric to identify worker VMs with resource

contention from noisy neighbors. We evaluate potential

performance improvements provided from leveraging these

techniques in support of providing modeling-as-a-service for two

environmental science models.

Keywords Resource Management and Performance; IaaS;

Virtualization; Multi-Tenancy;

I. INTRODUCTION

Public cloud environments abstract the physical hardware
implementation of resources providing users with only limited
details regarding the actual physical hardware
implementations. This abstraction hides resource
heterogeneity and restricts users’ ability to make well informed
deployment decisions based on real knowledge about the state
of the system. Resource heterogeneity includes differences in
the physical hardware used to implement identically named
resources, and also performance heterogeneity resulting from
contention for shared CPU, disk, and network resources. This
lack of information forces users to rely on the good will of
cloud hosts to make resource deployments. But to what degree
can we assume that cloud hosts will protect users from
potential performance degradation and increased hosting costs
resulting from heterogeneous resources?

Infrastructure-as-a-Service (IaaS) cloud resource
management challenges can be broken down into three primary
concerns: (1) Determining WHEN infrastructure should be
provisioned? (2) Determining WHAT infrastructure should be

provisioned? and (3) Determining WHERE infrastructure
should be provisioned?

Determining WHAT server infrastructure to provision for
application hosting concerns two dimensions: type of resources
(vertical sizing), and quantity (horizontal sizing) of virtual
machines (VM) resources. Vertical sizing involves selecting
the appropriate resource configuration “type” considering: the
required number of CPU cores, memory allocation, disk
capacity, and network bandwidth. On public clouds such as
Amazon EC2, specific VM resource configurations are known
as “instance types”. Each instance type, for example m3.large
or c3.xlarge, describes a given VM configuration with a fixed
amount of RAM, hard disk space, and network bandwidth.
Horizontal sizing involves determining the appropriate quantity
of VMs for workload hosting and then load balancing the
workload across this VM pool. Instance types such as the
Amazon EC2 m1.large VM have several physical
implementations and research has demonstrated a 30%
performance variance for web application hosting [1] [2].

WHERE server resources are provisioned within a specific
datacenter is abstracted by IaaS clouds. Representing VMs as
tuples and using them to pack physical machines (PMs) can be
thought of as an example of the multidimensional bin-packing
problem shown to be NP-hard [3]. In public cloud settings,
VM placement is abstracted and difficulty to discern [4].
Previous efforts using heuristics to infer VM co-residency by
launching probe VMs for exploration can be expensive and
only partially effective at determining VM locations [5] [17]
[18] [19] [20]. Public clouds do support features including
Virtual Private Clouds (VPCs) and “placement groups” to
ensure locality of VM placements for application hosting.
These features help ensure data center and rack locality for
application VMs. – but they do not ensure resource quality.
Though application resource placements are localized, the
physical hosts may be overprovisioned, or host “noisy
neighbor” VMs, resource hungry VMs which consume an
unusual share of CPU, disk, or network resources. This
resource contention has been shown to degrade performance of
scientific applications hosted in public clouds [4] [6].

In this paper, we investigate the performance implications
of public cloud infrastructure abstraction for hosting scientific

2

modeling web services to provide scientific “modeling-as-a-
service” for ubiquitous clients. Specifically, we investigate the
implications of WHAT infrastructure gets provisioned (resource
implementation), and WHERE this infrastructure is provisioned
(resource state). We first quantify performance degradation
resulting from public cloud resource type heterogeneity
(WHAT), and second from resource contention (WHERE). We
benchmark the performance by hosting two US Department of
Agriculture environmental modeling web service applications
on Amazon’s public EC2 cloud. Secondly, we propose two
approaches which help mitigate this performance degradation
through intelligent public cloud resource provisioning.

A. Research Questions

We investigate the following research questions:

RQ-1: How common is public cloud VM-type
implementation heterogeneity?

RQ-2: What performance implications result from this
heterogeneity for hosting web services application
workloads?

RQ-3: How effective is cpuSteal at identifying worker VMs
with high resource contention due to multi-tenancy
(e.g. noisy neighbor VMs) in a public cloud?

RQ-4: What are the performance implications of hosting
scientific modeling workloads on worker VMs with
consistently high cpuSteal measurements in a public
cloud?

CpuSteal provides a processor metric that helps quantify
overprovisioning of the physical hardware. When a VM CPU
core is ready to execute but the physical host CPU core is
unavailable because it is performing other work, a CpuSteal
tick is registered. Herein we describe our investigation on the
feasibility of harnessing this CPU metric to identify resource
contention from overprovisioned hosts in public clouds.

B. Contributions

This paper reports on our case study which develops and
applies two approaches to improve performance of service
oriented workloads hosted using public clouds. The primary
contributions of this paper include:

1. We investigate the prevalence of resource contention
among VMs on a shared host using the cpuSteal CPU
metric. We measure cpuSteal for several hours while
running compute intensive workloads across eight-
different VM types from Amazon’s EC2 cloud. We
develop an approach called Noisy-Neighbor-Detect
(NN-Detect) which harnesses the cpuSteal metric to
identify resource contention from noisy neighbor VMs
running in a shared cluster. Using this approach we
identify VMs which exhibit degraded performance
from resource contention, and quantify the potential
impact on application performance for hosting USDA
scientific model-as-a-service workloads.

2. We investigate the prevalence of host heterogeneity for
12 VM-types spanning 3 generations in 2 regions on
Amazon’s EC2 cloud. We apply the trial-and-better

approach described in [1] to create VM pools with
fixed VM implementations with a given CPU type. We
quantify the implications for average service execution
time for USDA model-as-a-service workloads from
heterogeneous VM type implementations.

II. BACKGROUND AND RELATED WORK

A. Scientific Modeling on Public Clouds

Ostermann et al. provided an early assessment of public
clouds for scientific modeling in [7]. They assessed the ability
of 1st generation Amazon EC2 VMs (e.g. m1.*-c1.*) to host
HPC-based scientific applications. They identified that EC2
performance, particularly network latency, required an order of
magnitude improvement to be practical and suggested that
scientific applications should be tuned for operation in
virtualized environments. Other early efforts highlighted
similar challenges regarding performance for HPC applications
[8] [9] [10]. To increase ubiquity of scientific models and
applications, and to support dissemination of research, many
organizations now build and host scientific web services [11]
[12]. The Cloud Services Integration Platform (CSIP), a Java-
based programming framework, has been developed by
Colorado State University in cooperation with the US
Department of Agriculture. CSIP supports development and
deployment of web services for a number of USDA scientific
modeling applications implemented in languages such as C,
FORTRAN, Python, and others. Infrastructure-as-a-Service
cloud computing offers an ideal platform for CSIP services
which mix legacy code with modern framework
instrumentation to provide modeling-as-a-service, on demand,
to diverse client applications [13] [14].

B. Public Cloud Resource Contention Detection

Schad et al. [6] demonstrated the unpredictability of
Amazon EC2 VM performance caused by contention for
physical machine resources and provisioning variation of VMs.
More recently researchers have developed techniques to
identify resource contention from coresident VMs running on
shared hardware [15] [16] [17] [18] [19] [20].

Mukherjee et al. developed a software-based resource
contention probe based on techniques not specific to hardware
or OS specific counters to provide a more portable technique
[17]. They monitored TCP/IP connection rates and memory
contention from cache misses, but their work was restricted to
a small private cluster. Novakovic et al. developed a multi-
level approach for detecting and mitigating resource contention
in private clusters [18]. They used an initial lightweight
warning detector to infer potential contention which would
trigger a more complex inference analyzer to perform in depth
analysis. Their inference analyzer predicts whether VM
migration can alleviate resource contention by predicting
system load after migration, as well as where VMs should
migrate. Zhang et al. and Varadarajan et al. both exploit side
channels to help determine coresidency of VMs, work done
from the perspective of demonstrating how cloud systems are
potentially insecure. Zhang et al. developed a single and multi-
probe classifier which was quite successful at detecting co-
located VMs [19]. However, their approach required kernel

3

modifications, extensive benchmarking and training, and
doesn’t work in a virtual private cloud (VPC) configuration
where VMs run on isolated VLANs behind a firewall.
Varadarajan et al. used a side channel requiring less analysis,
by performing atomic addition across a CPU cache-line
boundary, to detect co-located VMs on the Google Compute
Engine, Amazon EC2, and Microsoft Azure public clouds [20].
Though novel and effective at detecting VM coresidency a
potential security concern, their approach does not detect
resource contention among coresident VMs.

Liu offers a novel approach to characterize CPU utilization
across a public cloud by analyzing CPU temperature [16].
Liu’s approach averages thermal measurements of the CPU
from small VMs which are context switched across the
physical host’s CPU cores for extended periods to approximate
CPU die temperature which correlates with CPU utilization.
Using this approach Liu observed CPU utilization using 20
m1.small VMs on Amazon EC2 in 2011 for 1 week and
estimated average CPU utilization to be around 7.3%. Liu did
not consider if temperature can help detect resource contention
and application performance degradation.

A few efforts have looked at using cpuSteal to detect
contention among VMs [15] [21]. Casale et al. considered the
use of cpuSteal to look for contention between hyperthreads of
the same CPU-core using private servers [21]. Ayodele et al.
demonstrated a link between application performance and
cpuSteal using SPEC CPU2006 benchmarks [15]. They
verified this link on both a private cluster and with the
m3.medium Amazon EC2 VM type. This effort did not further
develop the cpuSteal-performance link into a mechanism to
support contention avoidance and performance improvement.

C. Public Cloud Heterogeneity

Farley et al. demonstrated that Amazon EC2 instance types
had heterogeneous hardware implementations in [2]. Their
investigation focused on the m1.small instance type and
demonstrated potential for cost savings by discarding VMs
with lower performance CPUs. Ou et al. extended their work
by demonstrating that heterogeneous implementations impact
several Amazon and Rackspace VM types [1]. They found
that the m1.large EC2 instance had four different hardware
implementations (variant CPU types) and different Xen CPU
sharing configurations. They demonstrated ~20% performance
variation on operating system benchmarks for m1.large VM
implementations. This technique enabled the development of a
“trial-and-better” approach where the backing CPU type of
VM instances upon launch are checked, and those with lower
performing CPU types are terminated and relaunched. This
technique provided cost savings through performance
improvements when using m1.large EC2 instances for 10 or
more hours.

III. SCIENCE APPLICATIONS

To study public cloud performance implications from noisy
neighbor VMs and resource type heterogeneity, we harnessed
two environmental modeling services implemented using the
Cloud Services Integration Platform (CSIP) framework
[13][14]. CSIP provides a common REST/JSON Java-based

programming framework supporting the development of web
services hosted using web containers such as Apache Tomcat
[29]. CSIP has been developed by Colorado State University
and the US Department of Agriculture (USDA) to support
environmental modeling web service development.

We investigated implications for scaling workloads for two
soil erosion models: the Revised Universal Soil Loss Equation
– Version 2 (RUSLE2) [22], and the Wind Erosion Prediction
System (WEPS) [23]. RUSLE2 focuses on modeling soil
erosion due to rainfall and runoff, while WEPS predicts soil
erosion due to wind. Both model services represent diverse
applications with varying computational requirements.
RUSLE2 and WEPS represent the US Department of
Agriculture–Natural Resource Conservation Service agency
standard models used by over 3,000 county level field offices
across the United States to predict soil erosion. RUSLE2
models soil erosion primarily by parameterizing the RUSLE
equation, whereas WEPS is a daily process-based simulation
model.

RUSLE2 was originally developed as a Windows-based
Microsoft Visual C++ desktop application. WEPS was
originally developed as a desktop Windows application using
Fortran95 and Java. The RUSLE2 and WEPS services require
legacy language support, a mixture of Linux and Windows
support, as well as relational, geospatial, and NoSQL
databases. RUSLE2 and WEPS model service components are
described in Table I. IaaS cloud computing is key to providing
the infrastructure required to provide RUSLE2 and WEPS as
scalable web services.

Fig. 1: RUSLE2 vs. WEPS
Model Execution Time Quartile Box Plot

RUSLE2 and WEPS have distinctly different workload
profiles. A box plot depicts the average service execution
times for RUSLE2 and WEPS in Figure 1. Average cpuUser,
cpuKernel, and cpuIdle time for cloud hosted workloads are
shown in Figure 2 with RUSLE2 (37.8% | 7.1% | 54.9%) vs.
WEPS (83.8% | 4.2% | 12.0%). CpuIdle is time spent waiting
for disk or network I/O operations to complete, or time spent
performing context switches where the CPU does not actively
execute instructions. The RUSLE2 model executes quickly as
the model primarily parametrizes the RUSLE equation.
Parameterization involves mostly I/O, while the model run is

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

4

computationally simple. Conversely, WEPS is a CPU-bound
process based simulation model which runs for at least 30-
years using a daily time step. Their diversity makes RUSLE2
and WEPS good candidates to benchmark cloud infrastructure
performance.

Fig. 2: RUSLE2 vs. WEPS CPU Profile
Comparison of: Kernel time, User mode time, Idle time

TABLE I. RUSLE2/WEPS APPLICATION COMPONENTS

Component RUSLE2 WEPS

M Model Apache Tomcat, Wine 1,
RUSLE2 [22], CSIP
[13]

Apache Tomcat, WEPS
[23], CSIP [13]

D Database Postgresql, PostGIS,
soils data (1.7 million
shapes), management
data (98k shapes),
climate data (31k
shapes), 4.6 GB total

Postgresql, PostGIS,
soils data (4.3 million
shapes), climate/wind
data (850 shapes), 17GB
total.

F File server nginx file server,
57k XML files (305MB),
parameterizes RUSLE2
model runs.

nginx file server, 291k
files (1.4 GB),
parameterizes WEPS
model runs.

L Logger Redis distributed cache
server

Redis distributed cache
server

 To load balance model service requests we used HAProxy,

a high performance load balancer [8], to redirect modeling

requests across the active pool of M worker VMs. HAProxy,

installed on a PM, provides public service endpoints.

IV. THE VIRTUAL MACHINE SCALER

To investigate infrastructure management techniques and
support hosting of scientific modeling web services we
developed the Virtual Machine (VM) Scaler, a REST/JSON-
based web services application [24]. VM-Scaler harnesses the
Amazon EC2 API to support application scaling and cloud
management and currently supports Amazon’s public elastic
compute cloud (EC2), and Eucalyptus 3/4 clouds. VM-Scaler
provides cloud control while abstracting the underlying IaaS
cloud and is extensible to any EC2 compatible cloud. VM-
Scaler provides a platform for conducting IaaS cloud research
by supporting experimentation with hotspot detection schemes,

VM management/placement, job scheduling, and load
balancing of service requests. VM-Scaler supports horizontal
scaling of application infrastructure by provisioning VMs when
application hotspots are detected, similar to Amazon auto-
scaling groups [25].

 Upon initialization VM-Scaler probes the host cloud and
collects metadata including location and state information for
all PMs and VMs. An agent installed on all VMs/PMs sends
resource utilization statistics to VM-Scaler at fixed intervals.
Collected resource utilization statistics are described in
[26][27]. Our development of VM-Scaler extends and enables
this prior work investigating the use of resource utilization
statistics to guide cloud application deployment.

VM-Scaler supports creation of virtual machine pools to
support scaling and management of VMs hosting a specific tier
of an application. Pools are defined using JSON files and can
be created using dedicated or spot instances on Amazon EC2.
VM-scaler supports managing a pool as a cohesive unit with
functions to execute a command or deploy new data across all
of the members of a pool in parallel. Pool management also
includes enforcement of VM type heterogeneity. The
forceCpuType attribute specifies the desired backing CPU type
in Amazon’s public cloud. When a pool is created, non-
matching VMs are immediately terminated and replaced until
an entire pool of matching VMs is created. This way it is
possible to filter out heterogeneous VM types and ensure
homogeneity of the backing CPU in a manner similar to the
“trial-and-better” approach [1].

VM-Scaler supports profiling the resource requirements of
distributed cloud workloads running across a set of VM-scaler
managed VMs [28]. A resource utilization sensor is installed
on each VM to send resource utilization data to the central
VM-Scaler web service at an adjustable interval. By
harnessing the Linux network time protocol (ntp) resource
sampling can be synchronized across a pool to a resolution of
1-second. This supports collection of accurate workload
profiles for workloads running across large VM pools. In this
paper, we exercise this feature using pools with up to 60 VMs
to collect cpuSteal statistics. VM-scaler workload profiling is
similar to Amazon CloudWatch metrics except our
implementation supports sampling at a 1-second resolution for
free vs. 60-seconds with CloudWatch. VM-scaler provides
raw profiling data for researcher consumption to analyze
performance and build models.

V. HETEROGENEITY OF VM IMPLEMENTATIONS

A. Background and Methodology

Previous research has demonstrated that hardware
implementations of public cloud VM types change over time
[1] [2]. Today, Amazon still hosts the original first generation
instance types initially offered in 2007. As the original server
hardware has long since been retired, new hardware was tasked
with providing the equivalent VM types. This hardware
replacement has led to a variety of implementations in Amazon
EC2, especially for older generation VM types. Several
hardware implementations of the same VM type may be
offered at once, each with different performance

5

characteristics. When hosting scientific modeling workloads
on public clouds we are interested in understanding the
performance implications of VM type heterogeneity. Can we
exploit this heterogeneity to improve performance of scientific
modeling workloads?

To investigate implications of VM host heterogeneity, VM-
Scaler provides host CPU type enforcement as described
earlier using the “forceCpuType” attribute. CPU type
enforcement incurs the additional expense of launching and
terminating unmatching VM instances. In Amazon EC2,
discarded VMs are billed for 1-hour of usage; we used EC2
spot instances to minimize these costs.

B. Experimental Setup

In [1], VM host heterogeneity is observed for m1.small,
m1.large, and m1.xlarge VMs across all Amazon EC2 east
subregions. To extend earlier work, we tested host
heterogeneity for 12 VM types: 1st generation VM types
(m1.medium, m1.large, m1.xlarge, c1.medium, c1.xlarge), 2nd
generation types (m2.xlarge, m2.2xlarge, and m2.4xlarge), and
3rd generation types (c3.large, c3.xlarge c3.2xlarge, m3.large).
To investigate the prevalence of VM-host heterogeneity (RQ-
1) we first launched 50 VMs for each of the 12 VM types.
When heterogeneity was detected, we launched 50 more VMs
for a total of 100. Tests were performed using two Amazon
regions: us-east-1c and us-east-1d. Host heterogeneity was
determined by VM-Scaler by inspecting Linux’s /proc/cpuinfo
proc-file.

To quantify the effect of host heterogeneity on model
service performance (RQ-2), we studied the two VM types
exhibiting the highest degree of heterogeneity. We completed
batch model service workloads using WEPS and RUSLE2 on
pools of 5 VMs for each implementation type. We performed
10 trials of 100 WEPS runs, and 10 trials of 660 RUSLE2 runs
using these implementation-specific pools to compute average
model service execution time.

We did not investigate VM host heterogeneity for very
small VMs which do not receive 100% of a full CPU core
allocation such as the bursting VMs (e.g. t1.small) and 1-core
VMs (e.g. m1.small, m3.medium). These VM types provide
minimal throughput for service hosting.

TABLE II. AMAZON VM HOST HETEROGENEITY

VM type Region Backing CPU Backing CPU

m1.medium us-east-1c
Intel E5-2650 v0

8c,95w,96%

Intel Xeon E5645

6c,80w,4%

m2.xlarge us-east-1c
Intel Xeon X5550

4c, 95w, 48%

Intel Xeon E5-2665 v0

8c, 115w, 42%

m1.large us-east-1d
Intel Xeon E5-2650 v0

8c,95w,74%

Intel Xeon E5-2651 v2

12c,105w,19%

m1.large us-east-1d
Intel Xeon E5645

6c,80w,7%
--

m2.xlarge us-east-1d
Intel Xeon E5-2665 v0

8c, 115w,78%

Intel Xeon X5550

4c, 95w, 22%

C. Experimental Results

We tested 12 VM types across 3 generations, and found
significant VM host heterogeneity for 3 of the types (25%)

from 2 generations while testing on two different Amazon
regions (us-east-1c and us-east-1d). We discovered 7
implementations of these 3 VM types. On average, a given
hardware configuration was found to support 43.3% of the VM
instances for the m1.medium, m1.large, and m2.xlarge VM
types as described in Table II. Five different Intel CPUs
spanning two microarchitectures and four different sets of
microcode were found to provide these implementations. We
found that m1.large VMs were implemented with CPUs from
two different Intel microarchitecture generations (Nehalem and
Sandy Bridge) and three different microcode releases
(Nahalem, Westmere, and Ivy Bridge). This hardware

heterogeneity is almost certain to provide variable
performance under the label “m1.large”.

Our tests revealed implementation host heterogeneity for
1st and 2nd generation VMs. Where we did not observe VM-
host heterogeneity this does not imply it doesn’t exist, nor does
it imply if it will exist in the future. As CPUs continue to
evolve, and legacy hardware ages, we suspect to see host
heterogeneity for 3

rd
, 4

th
 and future VM generations. Migration

to core dense, lower power CPUs in cloud data centers stands
to save energy and lower datacenter costs for all public cloud
providers.

Compared to Ou et al.’s results [1], we observed that some
CPU types found in 2011 and 2012 have been replaced with
lower power, core-dense CPUs. For example we observed
m1.xlarge VM implementations using the 12-core Intel Xeon
E5-2651 CPU. Higher core density CPUs should help save
energy, and reduce resource contention, while enabling server
real estate to expand. Previously m1.large VMs implemented
using AMD Opteron’s consumed as much as 42.5 watts per
core! Implementations using the Intel Xeon E5-2651 v2 require
only 8.75 watts per core. This amounts to just ~20% of the
previous power requirement.

Fig. 2. Normalized Model Service Execution Time
with Heterogeneous VM Implementations

Model service performance implications are shown in
figure 2. For the m1.large VM implementations, model
performance was slower when the VM was backed by the Intel
Xeon E5-2650-v0. Average normalized execution time was
108% for RUSLE2, and 109% for WEPS versus VMs backed

6

by the Intel Xeon E5645 CPU. For the m2.xlarge VM
implementations, model performance was slower when the VM
was backed with the Intel Xeon E5-2665-v0. Average
normalized execution time was 114% for RUSLE2, and 104%
for WEPS versus VMs backed by the older Intel Xeon X5550.
Ironically, newer CPUs provided lower performance than their
legacy counterparts in both cases.

VI. IDENTIFYING RESOURCE CONTENTION WITH CPUSTEAL

A. Background

Resource contention in a public cloud can lead to
performance variability and degradation in a shared hosting
environment [4] [6]. CpuSteal registers processor ticks when a
VM’s CPU core is ready to execute but the physical host CPU
core is busy performing other work. The core may be
unavailable because the hypervisor (e.g. Xen dom0) is
executing native kernel mode instructions, or user mode
instructions for other VMs. High cpuSteal time can be a
symptom of over provisioning of the physical servers hosting
VMs. On the Amazon EC2 public cloud, which uses a variant
of the Xen hypervisor, we observe a number of factors that
produce CpuSteal time. These include:

1. Processors are shared by too many VMs, and those
VMs are busy.

2. The hypervisor kernel (Xen dom0) is occupying the
CPU.

3. The VM’s CPU time share allocation is less than
100% for one or more cores, though 100% is needed
to execute a CPU intensive workload.

In the case of 3, we observe high cpuSteal time when
executing workloads on Amazon EC2 VMs which under
allocate CPU cores. A specific example is the m1.small and
m3.medium VMs. We observed that the m3.medium VM type
is allocated approximately 60% of a single core of the 10-core
Xeon E5-2670 v2 CPU at 2.5 GHz. Consequently even an idle
m3.medium VM produces cpuSteal. This observation explains
the high cpuSteal values for m3.medium VMs studied in [15].
Because of this under allocation, all workloads executing at
100% on m3.medium VMs exhibit high cpuSteal because they
must burst and use unallocated CPU time to reach 100%.
These burst cycles are granted only if they are available,
otherwise cpuSteal ticks are registered.

B. CpuSteal Noisy Neighbor Detection Method

Noisy neighbors are busy, co-located VMs that compete for
resources that can adversely impact performance. We
investigate the utility of using cpuSteal to detect resource
contention from these “noisy neighbors” VMs using the
Amazon EC2 public cloud. We use the CSIP-WEPS modeling
service which features an average CPU utilization of 88% to
detect Noisy Neighbors. We propose and investigate the use of
the following “CpuSteal Noisy Neighbor Detection method”
(NN-Detect):

Step 1. Execute a processor intensive batch workload across

a pool of worker VMs several times. (WEPS)

Step 2. For each batch run, capture cpuSteal for each worker

 VM for the duration of the workload.

Step 3. Calculate the average and standard deviation of

cpuSteal across the VM pool for the batch runs.

(cpuStealavg).

Step 4. Identify the presence of noisy neighbor VMs by

applying application agnostic and application specific

thresholds to VM cpuSteal averages.

To detect when noisy neighbors share the same physical hosts,
we screened for outliers using the application agnostic
threshold:

cpuStealvm ≥ cpuStealavg + (2 ∙ stdev)

To classify as having noisy neighbors we applied a second
threshold:

cpuStealvm ≥ 10 ticks

When a worker VM has fewer than 10 cpuSteal ticks this is
considered too low to discern from noise. In these instances,
this minor amount of resource contention, potentially from the
hypervisor, is deemed insignificant and too low to degrade
application performance. We validated these application
agnostic thresholds by benchmarking representative workloads
and qualitatively observing relationships between WEPS
model performance and cpuSteal. Our approach using
CpuSteal does not require the use of separate probe VMs as in
[17] as workload execute and profiling occur simultaneously
on the same VMs. We describe the results of our evaluation of
NN-Detect using the WEPS model as the computational
workload below.

C. Experimental Setup

To investigate the utility of cpuSteal for detecting resource
contention from VM multi-tenancy (RQ-3) we evaluated NN-
Detect using WEPS model service batch workloads as it is
more CPU bound than RUSLE2 (figure 2). For step 1, we ran
WEPS batch workloads on the VM pools described in table III.
To enforce hardware homogeneity of our test environment we
used the “forceCpuType” attribute of VM pools supported by
VM-Scaler to guarantee every VM would be implemented with
the same backing CPU. We launched 50 VMs for each VM
type listed in table III, except for the 8-core c1.xlarge (25
VMs), and the 1-core m1.medium and m3.medium (60 VMs).
We repeated 4 batch runs of approximately 1,000 randomly
generated WEPS runs. Model runs were distributed evenly
using HAProxy round-robin load balancing across all VMs in
the pool. The 4 batch runs required a total of approximately 5
hours to complete.

For step 2, we totaled individual VM cpuSteal ticks for
each VM in the worker pools for each WEPS batch job. For
step 3, we calculated the average and standard deviation of
cpuSteal for every VM across batch runs. We then looked for
patterns in cpuSteal behavior for each of the 9 different VM
pools from Table III. For step 4, we applied the thresholds

7

described above using data from step 3 to identify VMs with
noisy neighbors. To measure the performance implications of
noisy neighbors (RQ-4) we created sub-pools of 5 VMs using
the existing VMs. One sub-pool consisted of 5 VMs where
cpuSteal exceeded the noisy-neighbor thresholds (step 4), and
the other was 5 randomly selected VMs that did not exceed
thresholds. We then completed 10 batches of 100 WEPS runs,
and 10 batches of 660 RUSLE2 runs to compare performance.

D. Experimental Results

To address (RQ-3) we compared individual VM cpuSteal
values from each batch run and used linear regression to test if
one batch’s cpuSteal behavior could predict cpuSteal for future
batch runs. Statistically we wanted to know how much
variance is explained by comparing individual VM cpuSteal
values across batch runs. The averaged R

2
 values from these

comparisons appear in table IV. R
2
 is a measure of prediction

quality that describes the percentage of variance explained by
the regression. The important discovery here is that over 5-
hours, early observations of cpuSteal were helpful to predict
the future presence of cpuSteal! Using this approach we can
detect resource contention patterns that persist. We observe
predictable patterns of VM cpuSteal behavior using Amazon
EC2 for 4 VM types (m1.large, m2.xlarge, m1.xlarge,
m1.medium) at (R

2
 > .44), and as high as R

2
=.94 for m1.xlarge.

To evaluate (RQ-4) we next calculated average and
standard deviation scores of cpuSteal for the VM pools to
determine threshold values to identify worker VMs with noisy
neighbors. When no worker VMs exceeded these thresholds
for a given type (e.g. c3.large), cpuSteal was not useful at
detecting potential performance degradation from noisy
neighbors. Table III shows the “% Noisy Neighbors”
identified by NN-Detect. VMs without noisy neighbors tended
to be hosted on physical hosts backed by higher density 10 and
12-core CPUs. (e.g. c3.large, m3.large, m3.medium, c1.xlarge).
Modern 10 and 12-core Intel Xeon CPUs all feature hyper
threading and new servers often utilize 2 or 4 CPUs per server.
By increasing the number of available hyper threads in a dual-
CPU server from 16 (X5550) to 48 (E5-2651) the likelihood of
resource contention from multi-tenancy should drop to ¼ of the
original amount. Such advances in hardware should help
mitigate public cloud resource contention until demand
increases to consume this additional capacity.

We applied NN-detect thresholds to create two mini-pools
of 5 VM each. One pool consisted of VMs with noisy
neighbors identified using NN-detect, and the other pool were
randomly chosen worker VMs without noisy neighbors. We
compared the performance of these mini-pools by executing
WEPS and RUSLE batch runs as described earlier. The
observed performance degradation for model service execution
time with noisy neighbor VMs is shown in table IV.
Performance is normalized vs. VM pools without noisy
neighbors to show the increase in execution time resulting from
noisy neighbors. Across 4 VM-types we observe average
performance degradation up to 18% for WEPS and 25% for
RUSLE2 using m1.large VMs. Three VM types (m1.large,
m2.xlarge, m1.medium) produced statistically significant (p >
.05) performance degradation for the repeated batch runs. The
average performance degradation for RUSLE2 and WEPS

model services for execution on VM pools with noisy
neighbors was 9% across all tests.

TABLE III. AMAZON EC2 CPUSTEAL ANALYSIS

VM type Backing

CPU

Average R2

linear reg.

Average

cpuSteal

per core

% with

Noisy

 Neighbors

us-east-1c

c3.large-2c E5-2680v2/10c .1753 2.35 0%

m3.large-2c E5-2670v2/10c - 1.58 0%

m1.large-2c E5-2650v0/8c .5568 15.24 10%

m2.xlarge-2c X5550/4c .4490 953.25 6%

m1.xlarge-4c E5-2651v2/12c .9431 29.01 4%

m3.medium-1c E5-2670v2/10c .0646 17683.21 n/a

c1.xlarge-8c E5-2651v2/12c .3658 1.86 0%

us-east-1d

m1.medium-1c E5-2650v0/8c .4545 6.2 7%

m2.xlarge-2c E5-2665v0/8c .0911 3.14 0%
1
 LESS THAN 100% CPU CORE ALLOCATION PRODUCES SIGNIFICANT CPUSTEAL

TABLE IV. EC2 NOISY NEIGHBOR MODEL SERVICE
PERFORMANCE DEGRADATION

1

VM type Region WEPS RUSLE2

m1.large

E5-2650v0/8c

us-east-1c 117.68%

df=9.866

p=6.847·10-8

125.42%

df=9.003

p=.016

m2.xlarge

X5550/4c

us-east-1c 107.3%

df=19.159

p=.05232

102.76%

df=25.34

p=1.73·10-11

m1.xlarge

E5-2651v2/12c

us-east-1c 100.73%

df=9.54

p=.1456

102.91%

n.s.

m1.medium

E5-2650v0/8c

us-east-1d 111.6%

df=13.459

p=6.25·10-8

104.32%

df=9.196

p=1.173·10-5
1
 NORMALIZED MODEL SERVICE PERFORMANCE FOR WORKER VMS IS 100%.

To summarize our key findings: (1) a complete set of
WEPS batch runs required up to 5 hours to complete.
Throughout this time, trends in cpuSteal remained consistent to
produce statistically significant model service performance
degradation shown in table IV. And, (2) in cases where
cpuSteal did not identify resource contention from noisy
neighbors, it likely did not exist. In these cases the host
hardware tended to be more core-dense. To conclude, our
results suggest that resource contention and application
performance degradation is more likely in public clouds when
VMs are hosted using hardware with fewer CPU cores.

VII. CONCLUSIONS

Public cloud environments abstract the physical hardware
implementation of resources providing users with limited
details regarding the actual physical cluster implementations.
For public cloud hosting of model services, the trial-and-better
approach can improve model service performance and lower
hosting costs. We tested 12 VM-types provided by Amazon
EC2 and found that 25% of the types had more than one
hardware implementation. (RQ-1) By leveraging the trial-and-
better approach in VM-scaler we demonstrated potential for a

8

14% RUSLE2 model performance improvement (m2.xlarge)
and 9% WEPS performance improvement (m1.large) by
harnessing VM-host heterogeneity (RQ-2).

We developed an approach to find noisy neighbor VMs in a
public cloud which cause unwanted resource contention by
harnessing the cpuSteal CPU metric (NN-detect). We tested
9VM types across 2 regions in Amazon EC2 and found that 4
VM types had VMs which were able to measure increased
levels of cpuSteal which persisted over several hours (RQ-3).
We applied our NN-detect method to isolate pools of VMs
with and without resource contention from noisy neighbors to
measure performance degradation. Running batch workloads
on pools consisting of VMs with high resource contention
produced model service performance degradation up to 18%
for WEPS and 25% for RUSLE2 (RQ-4).

Abstraction of physical hardware using IaaS clouds leads to
the simplistic view that cloud resources are homogenous and
that scaling will infinitely provide linear increases in
performance because all resources are identical. Our results
demonstrate how trial and better evaluation of VMs in public
clouds can help mitigate both resource contention and address
hardware heterogeneity to deliver performance improvements.
We quantify the extent of hardware heterogeneity and resource
contention in Amazon EC2’s public cloud, and quantify
performance implications for service-oriented application
workloads. Our results provide simple and promising
techniques that can be leveraged to improve workload
performance leading to potential for cost savings in public
clouds.

REFERENCES

[1] Z. Ou, H. Zhuang, A. Lukyanenko, J. Nurminen, P. Hui, V. Mazalov, A.
Yla-Jaaski, Is the Same Instance Type Created Equal? Exploiting

Heterogeneity of Public Clouds, IEEE Trans. on Cloud Computing, vol.

1, No. 2, July-Dec 2013, pp. 201-214.
[2] B. Farley, et al., More for Your Money: Exploiting Performance

Heterogeneity in Public Clouds, Proc. 3rd ACM Int. Symp on Cloud

Computing (SoCC ’12), San Jose, CA, USA, Oct 14-17, 2012, 14 p.
[3] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic

consolidation of virtual machines in Cloud data centers, Concurrency
and Computation: Prac.and Exp., v24, n13, Sept.2012, pp.1397-1420.

[4] M. Rehman, M. Sakr, Initial Findings for Provisioning Variation in

Cloud Computing, Proc. of the IEEE 2nd Intl. Conf. on Cloud
Computing Technology and Science (CloudCom '10), Indianapolis, IN,

USA, Nov 30 - Dec 3, 2010, pp. 473-479.

[5] T. Ristenpart, E. Tromer, H. Shacham and S. Savage, “Hey, You, Get
Off My Cloud! Exploring Information Leakage in Third- Party Compute

Clouds, Proc. of the 16th ACM conf. on computer and communication

security (CCS ’09), Chicago, IL, USA, Nov. 9-13, 2009, pp. 199-212.
[6] J. Schad, J. Dittrich, J. Quiane-Ruiz, Runtime measurements in the

cloud: observing, analyzing, and reducing variance, Proc. of the VLDB

Endowment, v. 3, no.1-2, Singapore, Sept. 2010, pp. 460-471.
[7] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D.

Epema, A Performance Analysis of EC2 Cloud Computing Services for

Scientific Computing, Proc of the 1st Int. Conf on Cloud Comuting
(CloudComp ’09), Munich, Germany, Oct. 19-21, 2009, pp. 115-131.

[8] E. Walker, Benchmarking Amazon EC2 for High-Performance

Scientific Computing, USENIX; login: vol. 33, no.5, pp. 18-23., 2008.
[9] K. Jackson et al., Performance Analysis of High Performance

Computing Applications on the Amazon Web Services Cloud, Proc. of

the 2nd IEEE Int. Conf. on Cloud Computing Technology and Science
(CloudCom ’10), Indianapolis, IN, USA, Nov 30-Dec 3, 2010, oo. 159-

168.

[10] Y. Zhai, Cloud versus In House Cluster: Evaluating Amazon Cluster

Compute Instances for Running MPI Applications, Proc. State of
Practice Reports (SC ’11), Seattle, WA, USA, Nov 12-18, 2011, 10 p.

[11] P. Saripalli, C. Oldenburg, B. Walters, N. Radheshyam, Implementation

and Usability Evaluation of a Cloud Platform for Scientific Computing
as a Service (SCaaS), Proc of the 4th IEEE Int. Conf on Utility and

Cloud Computing (UCC 2011), Melbourne, Australia, Nov 5-8, 2011,

pp. 345-354.
[12] Villamizar, M., Castro, H., Mendez, D., E-Clouds: A SaaS Marketplace

for Scientific Computing, Proc. of the 5th IEEE/ACM Int. Conf. on

Utility and Cloud Computing (UCC 2012), Chicago, IL Nov 5-8, 2012,
8p.

[13] W. Lloyd et al., The Cloud Services Innovation Platform- Enabling

Service-Based Environmental Modeling Using IaaS Cloud Comp.
(iEMSs 2012)Int.Cong on Env.Model Softw., Germany, Jul 2012, 8 p.

[14] O. David et al., Model as a Service (MaaS) using the Cloud Services

Innovation Platform (CSIP), iEMSs 2014 Int. Cong on Env.Modeling
and Software, San Diego, CA, USA, Jun 2014, 8 p

[15] A. Ayodele, J. Rao, T. Boult, Performance Measurement and

Interference Profiling in Multi-tenant Clouds, Proc. of the IEEE Conf.
on Cloud Computing (Cloud 2015), New York, NY, 2015, pp. 941-949.

[16] H. Liu, A Measurement Study of Server Utilization in Public Clouds,

Proc. 9th IEEE International Conference on Cloud and Green Computing
(CAG’11), Sydney, Australia, Dec 2011, pp.435-442.

[17] J. Mukherjee, D. Krishnamurthy, J. Rolia, C. Hyser, Resource

Contention Detection and Management for Consolidated Workloads,
Proc. of the IFIP/IEEE Int. Symposium on Integrated Network

Management (IM 2013), Ghent, Belgium, 2013, pp. 294-302.
[18] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, R. Bianchini,

DeepDive: Transparently Identifying and Managing Performance

Interference in Virtualized Environments, 2013 USENIX Annual
Technical Conference (USENIX ATC ‘13), San Jose, CA, pp. 219-230.

[19] Y. Zhang, A. Juels, A., Oprea, M. Reiter, HomeAlone: Co-Residency

Detection in the Cloud via Side-Channel Analysis, 2011 IEEE
Symposium on Security and Privacy (SP 2011), Oakland, CA, pp. 313-

328.

[20] V. Varadarajan, Y. Zhang, T. Ristenpart, N. Swift, A Placement
Vulnerability Study in Multi-Tenant Public Clouds, 24th USENIX

Security Symposium, Washington DC, USA, pp. 913-928.

[21] G. Casale, C. Ragusa, P. Parpas, A Feasibility Study of Host-Level
Contention Detection by Guest Virtual Machines, Proc. of the 5th IEEE

Int. Conf. on Cloud Computing Technology & Science (CloudCom

2013), Bristol, UK, 2013, pp. 152-157.
[22] U.S. Department of Agriculture - Agricultural Research Service,

Revised Universal Soil Loss Equation Ver. 2 (RUSLE2),

http://www.ars.usda.gov/SP2UserFiles/Place/64080510/RUSLE/RUSLE
2_Science_Doc.pdf

[23] L. Hagen, “A wind erosion prediction system to meet user needs”, J. of

Soil and Water Conservation Mar/Apr 1991, v.46 (2), pp.105-111.
[24] W. Lloyd et al., The Virtual Machine (VM) Scaler: An Infrastructure

Manager Supporting Environmental Modeling on IaaS Clouds, Proc.

iEMSs 2014 International Congress on Environmental Modeling and
Software, San Diego, CA, USA, June 16-19, 2014, 8 p.

[25] AWS Documentation: Concepts – Auto Scaling , 2013,

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_Co
ncepts.html

[26] W. Lloyd et al., Performance implications of multi-tier application

deployments on IaaS clouds: Towards performance modeling, Future
Generation Computer Systems, v.29, n.5, 2013, pp.1254-1264.

[27] W. Lloyd et al., Performance Modeling to Support Multi-Tier

Application Deployment to IaaS Clouds, In Proc. of the 5th IEEE/ACM
Int. Conf. on Utility and Cloud Computing (UCC 2012), Chicago, IL

Nov 5-8, 2012, 8p.

[28] W. Lloyd, S. Pallickara, O. David, M. Arabi, K. Rojas, T. Wible, J.
Ditty, Demystifying the Clouds: Harnessing Resource Utilization

Models for Cost Effective Infrastructure Alternatives, IEEE

Transactions on Cloud Computing, 14pp, IEEE: To appear, 2017,
available online at: http://dx.doi.org/10.1109/TCC.2015.2430339.

[29] Apache Tomcat - Welcome, http://tomcat.apache.org/

