Biometric Zoos: Theory and Experimental Evidence*

Mohammad Nayeem Teli'!
David S. Bolme!

J. Ross Beveridge!
Bruce A. Draper!

P. Jonathon Phillips? Geof H. Givens®

1 Computer Science, Colorado State University, Fort Collins, CO, USA
2 Information Access Division, NIST, Gaithersburg, MD, USA
3 Statistics, Colorado State University, Fort Collins, CO, USA

Abstract

Several studies have shown the existence of biometric
zoos. The premise is that in biometric systems people fall
into distinct categories, labeled with animal names, indi-
cating recognition difficulty. Different combinations of ex-
cessive false accepts or rejects correspond to labels such as:
Goat, Lamb, Wolf, etc. Previous work on biometric zoos has
investigated the existence of zoos for the results of an algo-
rithm on a data set. This work investigates biometric zoos
generalization across algorithms and data sets. For exam-
ple, if a subject is a Goat for algorithm A on data set X, is
that subject also a Goat for algorithm B on data set Y? This
paper introduces a theoretical framework for generalizing
biometric zoos. Based on our framework, we develop an
experimental methodology for determining if biometric zoos
generalize across algorithms and data sets, and we conduct
a series of experiments to investigate the existence of zoos
on two algorithms in FRVT 2006.

1. Introduction

This paper revisits some fundamental questions raised
originally by Doddington et al. [2] concerning the role of the
individual in frustrating the system engineer charged with
the development of reliable biometric authentication. As we
will review in more detail shortly, Doddington put forward
a captivating hypothesis that different kinds of people were
responsible for complicating the task of biometric authen-
tication. In particular, that people could be categorized as
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Sheep, Goats, Lambs and Wolves. Numerous works have
subsequently pushed on this idea from several directions,
refining the underlying definitions and arriving at different
conclusions with respect to the relative importance of the
individual person. Ross et al. [8] used the Doddington zoo
effect to categorize the users into multiple categories. Sub-
sequently the weak users are required to provide additional
information to improve the overall performance of the sys-
tem. Poh et al. [6] looked at the entire user population and
normalized the score of each user to a standard form. They
presented a framework to determine whether the fusion of
the output of one or more systems is better than any one out-
put, per user. In another work, Poh and Kitler [7] concluded
that biometric zoos are algorithm dependent.

Yager and Dunstone [9] in particular took on the question
of how much of what makes biometric authentication diffi-
cult may be attributed to there being people who are hard
to recognize. In their paper they concluded that the differ-
ences observed in recognition difficulty between individual
people on a particular data set were attributable to factors
other than the identity of the people. They concluded the
notion that people fit neatly into distinct categories of diffi-
culty is essentially false.

We believe there is more going on with regard to this fun-
damental question than either prior works suggest, and we
take up the matter in the context of human face recognition.
Looking at the performance of two top commercial algo-
rithms in the Face Recognition Vendor Test (FRVT) 2006,
we first use Doddington’s original definitions to label peo-
ple on different data sets, and then use statistical hypothe-
sis testing to assess whether these labels are capturing any
intrinsic characteristic of the people themselves. We then
repeat the analysis for Yager and Dunstone’s categories.

Our findings are summarized as follows. Any simplistic
notion that variations in recognition performance are caused
primarily by intrinsic differences between people is wrong.
In this respect, our findings in this paper are consistent with



prior findings of others such as Yager and Dunstone [9] .
There are factors involving lighting, setting, expression, etc.
that more directly influence recognition difficulty [1].

However, within the context of a single algorithm, it is
equally wrong to presume that personal identity has noth-
ing to do with recognition difficulty. We demonstrate this
second finding using a rigorous statement of the underlying
hypothesis that personal identity does not matter, and this
formulation and the associated results represent the novel
contribution of our work.

This statistical hypothesis testing approach is used as the
basis for a new framework for describing and testing for the
existence of different levels of biometric zoo. At the bot-
tom is a zeroth-order zoo implying only that people may be
labeled as animals in a single experiment. A first-order zoo
exists when personal identity is shown to matter for other
data drawn from the same scenario, and higher-order zoos
pertain to greater levels of generalization.

The remainder of our paper is organized as follows. Sec-
tion 2 introduces our hierarchy of zoos and outlines the evi-
dence required for the existence of a zoo. Section 3 reviews
the original Doddington’s zoo and Section 4 illustrates our
framework applied to that zoo in the context of frontal face
recognition. Section 5 reviews the zoo proposed by Yager
and Dunstone and Section 6 applies our framework to the
animals in the that zoo. Finally, we summarize our results
in the last section.

2. A Framework for a Hierarchy of Zoos

We introduce a hierarchy of zoos generalized with re-
spect to algorithms and data. A zeroth-order zoo focuses
solely on the distribution of match and non-match scores for
a particular test of an algorithm. In other words, the scores
for a particular algorithm on a particular data set. For ex-
ample, Goats are people with unusually low match scores,
and for any algorithm and data set one can sort people by
their average match score and find the lowest 2 or 5%.

A first-order zoo is one that generalizes to new data
drawn from a common class of data, a scenario. In the
framework we are proposing, the existence of a first-order
zoo is tested through a series of repeated trials in which a
larger data set is randomly sampled to produce two parti-
tions. These partitions have no images in common, but are
otherwise representative of the larger set from which they
are drawn. If the zoo labels given to people have any mean-
ing in terms intrinsic difficulty associated with the individ-
ual person, then the same people should show up with the
same label in both partitions.

Our framework defines a first-order zoo more precise by
equating it with a statistical hypothesis test. If the exis-
tence of a first-order zoo means that the labels given to peo-
ple are associated with intrinsic properties of those people
that generalize given new images, then the number of peo-

ple sharing a common label for two random draws of data
should exceed that predicted by chance. Therefore, the null-
hypothesis is that the number of people sharing a given label
is governed solely by chance. Under the null-hypothesis, if
k out of n people are labeled as Goats in each of two parti-
tions of the data, the expected number labeled Goats in both
partitions is governed by a hypergeometric distribution.

To test for the existence of a first-order zoo, we can ran-
domly partition our larger data set and each time count the
number people given the same label in each partition. Doing
this for (= 50) randomized trials, we get a count of how
often zero people are assigned the same label, one person is
assigned the same label, and so on. Then, a X2 test is used
to determine the probability the observed number of people
given the same zoo label arises from the hypergeometric
distribution associated with our null-hypothesis. This prob-
ability is the p-value associated with the null-hypothesis
that zoo labels have no relation to personal identity. Ex-
istence of a first-order zoo is now a matter of accepting or
rejecting the null hypothesis based upon a p-value.

This same hypothesis testing framework extends to
higher order zoos. In particular, we define a second-order
700 to exist when the zoo labels assigned to people for a
given class of data generalize across algorithms. Likewise,
a second order zoo exists when the labels assigned to peo-
ple for a particular algorithm generalize across two different
classes of data. In our experiments below, we will specif-
ically consider two classes of face recognition image data,
controlled to uncontrolled lighting and uncontrolled to un-
controlled lighting.

The hierarchy may be extended. A third-order zoo im-
plies generalization across both algorithms and data sets.
A fourth-order zoo implies generalization across biometric
modalities. All of these are of interest in the long term, but
here we consider only first-, second- and third-order zoos in
the context of still image face recognition.

3. Doddington’s Zoo

Doddington et al. [2] introduced the concept of the bio-
metric zoo and based the definition of animals on either ex-
treme match or extreme non-match scores.

3.1. Sheep, Goats, Lambs and Wolves

Doddington et al. [2] defined Sheep, Goats, Lambs and
Wolves in the context of speaker recognition systems, and
their definitions may be summarized as follows:

e Sheep: A person who is a Sheep produces a biomet-
ric that matches well to other biometrics of themselves
and poorly to those of other people. As such, Sheep
generate fewer false accepts and rejects than average.

e Goats: A person who is a Goat produces a biometric
that matches poorly to other biometrics of themselves.



These low match scores imply a higher than average
false reject rate for Goats.

e Lambs: A person who is a Lamb can be easily im-
personated. When the biometric of such a person is
paired to a biometric from a different person the re-
sulting match score will be higher than average. Con-
sequently, false matches are more likely.

e Wolves: A person who is a Wolf is good at imper-
sonation.When such a person presents a biometric for
comparison they have an above average chance of gen-
erating a higher than average match score when com-
pared to a stored biometric of a different person.

The distinction between a Lamb and a Wolf rests upon an
assumed asymmetry between biometric signatures. In the
face recognition nomenclature of target and query images,
a target image is presumed to have been acquired in the past
and is stored with the recognition system. It is compared to
a query image, which is typically presumed to be a novel
image acquired at the time recognition is being carried out.

In some face recognition contexts, the asymmetry makes
sense, such as when query images acquired under uncon-
trolled lighting are compared to target images acquired un-
der controlled lighting (FRGC Experiment 4 [5]). In other
cases, where there is no meaningful distinction between
query and target images, the Lambs and Wolves merge into
a single category Lambs/Wolves.

Doddington et al. [2] provided precise definitions for
Goats, Lambs and Wolves. To determine which people
qualify as Goats on a particular dataset using a particular
algorithm, first the average match score for each person is
computed. Next, the people are sorted from lowest to high-
est match score. Finally, the first 2.5% of the people in this
sorted list are labeled as Goats. These people have overall
low match scores and are most likely to be falsely rejected
during verification.

To identify Lambs, first the average non-match score for
a person is computed from the pool of non-match scores
where the person provides the target image. Next, the peo-
ple are sorted from highest to lowest average non-match
score. Finally, the first 2.5% of the people in this list are
labeled as Lambs. The process for Wolves is nearly identi-
cal, with the change that average non-match scores are com-
puted from all non-match scores where a person contributes
the query image. When query and target images are inter-
changeable, a person is characterized by the average of all
non-match scores for which they contribute an image and
there is a single category Lambs/Wolves.

Sheep are defined by negation, all people not explicitly
labeled as Goats, Lambs or Wolves are labeled Sheep. Most
people are Sheep and as a category they are less interesting.

4. Evidence for Doddington’s Zoo

To put our framework to the test, we select people,
images, and similarity scores from FRVT 2006 experi-
ments [3]; experiments 22 and 24. In experiment 22, still
frontal face images taken with uncontrolled lighting are
matched against still frontal face images taken with un-
controlled lighting. Experiment 24 matches target images
taken under controlled lighting against query images taken
under uncontrolled lighting. Experiment 22 is symmetric
in so much as target and query images are interchange-
able and consequently there is no meaningful distinction
between Lambs and Wolves: we define a single category
Lambs/Wolves. Experiment 24 is asymmetric and the dis-
tinction between Lambs and Wolves is maintained.

Testing for the existence of a first-order zoo requires a
set of people and images such that the images can be ran-
domly divided into two disjoint partitions. To further bal-
ance the tests, the same number of images are selected for
each person. Finally, because images taken on the same day
are more easily matched, no two images for a given person
may be taken on the same day. Taking all these constraints
into account, 16 controlled and 16 uncontrolled lighting im-
ages were selected for each of 257 people.

Because part of testing for the existence of a second-
order zoo involves comparisons between algorithms, our
analysis uses results for two top performing FRVT 2006 al-
gorithms. These are two of the three algorithms used in the
construction of the Good, the Bad and the Ugly Challenge
Problem [4]. Tests for the existence of a first-order zoo will
be run independently for both algorithms. The algorithms
are designated as A and B.

4.1. Zeroth-Order Zoo

The zeroth-order Doddington’s Zoo always exists by def-
inition. In other words, people can always be sorted in
terms of average match scores and the bottom 2.5% la-
beled Goats. Since all our testing will be over the same 257
people, there will always be 6 Goats. Likewise for Lambs
and Wolves, we use the 2.5% cutoff originally proposed by
Doddington. Hence, for the uncontrolled-to-uncontrolled
(UU) scenario corresponding to Experiment 22 there will
be 6 Lambs/Wolves and for the uncontrolled-to-controlled
(UC) scenario corresponding to Experiment 24 there will be
6 Lambs and 6 Wolves. Henceforth experiments 22 and 24
will be referred by the scenarios UU and UC, respectively.

4.2. First-Order Zoo

The essential question upon which the existence of a
first-order zoo rests is whether a person labeled as a Goat
using data from a particular scenario is any more likely than
others to be labeled a Goat using different data drawn from
the same scenario. For the moment, let us concern our-
selves just with Goats. The extension to Lambs and Wolves



is straightforward and will come next.

To make this notion of generalizing within a scenario
more precise, a master data set is selected to characterize
the scenario. Then, it will be randomly partitioned into two
data sets and the number of people labeled Goats in both
will be compared against the expected outcome if labeling
was done independently for each data set.

Because of the symmetry of scenario UU and the asym-
metry of scenario UC, the process of partitioning the mas-
ter data set and labeling people is slightly different. For the
UU scenario, 8 of the 16 uncontrolled images for each per-
son are assigned to partition Ry and the remaining 8 images
are assigned to Ro. Then, for each partition and for each
person, all combinations of 8 images provide match scores.
Discarding images matching to themselves, the result is 56
match-scores per person.

Following Doddington’s recommendation, each person
is then characterized by the mean of these 56 match-scores.
The 6 people with the lowest mean match-score are labeled
as Goats in partition R;. Likewise, the 6 people with the
lowest mean match-score in K5 are labeled as Goats.

At one extreme, if one believed that personal identity
were the factor determining recognition difficulty, it would
be expected that the same 6 people would be labeled Goats
in R and Rs. In other words, once a Goat, always a Goat.
In practice, we do not observe anything approaching such
an absolute, and we focus upon the frequency with which
people are labeled Goats in both partitions.

For algorithm A and data set UU, the outcomes for 50
randomized trials is summarized in Table 1. By a random-
ized trial, we mean a new independent partitioning of the
16 images of a person into 8 for R; and 8 for Rs. To inter-
pret, the first row indicates outcomes using the mean match
score. Note that in 36 out of 50 trials, the intersection of
the people labeled Goats in Ry and in Rs is of size zero. In
other words, no person is labeled a Goat in both partitions.
In 10 trials the intersection contains one person, and in only
4 trials are there 2 people in the intersection.

Table 1. Goats intersection counts using mean and median match
scores. Column c0 is number of times the intersection is empty, c1
the number of times the intersection contains one person, etc.

measure | cO | ¢l | c2 | c3
mean | 36 | 10 4 0
median | 24 | 20 2 4

4.2.1 Ecxistence as a Statistical Hypothesis Test

The counts in Table 1 raise the key question "’Is this outcome
likely to happen by chance?”. To answer this question, and
formally define when a first-order zoo exists, we formulate
two hypotheses: HO and H1.

HO The probability of a person being labeled a Goat in one
partition is independent of their label in the other.

H1 A person labeled a Goat in one partition is more likely
to be labeled a Goat in the other.

As is often the case with statistical hypothesis testing, it is
easier to measure the probability of HO given observations
and reject HO in favor of HI when this probability, the p-
value, drops below a threshold.

Under the null hypothesis HO, the number of people la-
beled as Goats in both partitions is governed by a hyper-
geometric distribution. To see this, consider the following
connection to the more standard metaphor of drawing col-
ored marbles from a jar without replacement. To begin, let
us index people using integer identifiers O through 256 in-
clusive and further fix the labeling for R; such that people 0
through 5 inclusive are labeled Goats. Asking for the count
of people labeled Goats in both partitions is equivalent to
asking how many of the integers O through 5 are drawn at
random and without replacement from the set of integers
0 through 256 inclusive. Finally, we can simplify this last
statement to an equivalent statement, what is the probabil-
ity of drawing o white marbles from a jar containing 6 white
marbles and 257 — 6 = 251 black marbles? The count of
white marbles o is governed by the hypergeometric distri-
bution, indeed this white and black marble example is com-
monly used to motivate the hypergeometric distribution.

The hypergeometric distribution for 6 Goats and 257
people total tells us the probability of zero and one people
being Goats in both partitions is 0.8666 and 0.1268, respec-
tively. Two or more people labeled as Goats in both par-
titions by chance is a rare event, with probability 0.0066.
These probabilities can be mapped directly to expected
counts for our 50 trial experiment: 43 and 6 expected cases
with zero and one person labeled Goats in both, respec-
tively, and 1 with 2 or more people labeled Goats in both.
Intuitively, it is already apparent that the 4 out of 50 trials
with 2 people labeled Goats is unlikely under HO.

To make this rigorous, a x-square test between our ob-
served overlap counts and those predicted by HO is carried
out and this provides the p-value for HO. In the case for
row 1 of Table 1, the p-value is less than 10~ and HO is
rejected by any standard threshold. Thus, for algorithm A
and scenario UU there exists a first-order zoo for Goats.

4.2.2 Means vs. Medians

Row 2 of Table 1 shows the result using median match-score
in place of mean match-score to characterize a person. The
number of people labeled Goats in both partitions increases
using the median, and thus a person labeled a Goat in one
partition is somewhat more likely to be labeled a Goat in the
other partition using the median. All of the tests carried out



Table 2. First order zoo tests for Goats, Lambs and Wolves. The
p-value for HO is less than 10~* for all rows so we conclude that
a first-order zoo exists for all animals and both algorithms. L / W
represents Lambs / Wolves.

Animal | Algorithms | ¢O | cl | c2 | c3 | ¢4 | c5
Goats AUU 2412002141010
Goats AUC 1|8 (2212|710
Goats B,UU 1826 610|010
Goats B,UC O |5 125]12|5 |3
L/W A,UU 4 (2111|4010
Lambs AUC O | 1 |14]18]12|5

Wolves AUC 1 {11 ]17(18| 3|0
L/W B,UU 1 12127 6 | 4]0

Table 3. Second order zoo x? p-value to test the null hypothesis
that the Goats and Lambs/wolves intersections come from the null
distribution. The tests use the same algorithm with different class
of underlying data, UU to UC.

Animal | Algorithm | c0 | c1 | x? (p-value)
Goats A 50| 0 0.03495
Goats B 46 | 4 0.465
Lambs A 44 | 6 1
Lambs B 33 | 17 0.0011

Wolves A 48 | 2 0.1355

Wolves B 50 0 0.03455

Table 4. Second order zoo x? p-value to test the null hypothesis
that the Goats and Lambs/wolves (L / W) intersections come from
the null distribution. The tests use different algorithms with the
same class of underlying data. Each scenario and animal combina-
tion is repeated, with the first indicating a comparison of algorithm
A to B, and the next algorithm B to A.

Animal | Scen. | cO | cl [ c2 | c3 | c4 | x? (p-value)
Goats uu |40 | 9 1 01]0 0.2187
Goats UU |46 | 4 0 0 0 0.4612
Goats ucC 2 [19]19| 8 2 > 104
Goats ucC 2 (2118 9 0 > 104
L/W UU | 44| 6 0 0 0 1
L/W uu | 47| 3 0 0 0 0.2681

for this paper have been done using both the mean and the
median, and this result is typical. To give the zoo its best
chance of generalizing, we therefore will adopt the median
rather than the mean in all places where a set of match or
non-match scores must be condensed to a single value.

4.2.3 Results for both Algorithms and both Scenarios

Table 2 summarizes the results of our tests for the existence
of a first order zoo for both algorithms and both scenarios.
The columns indicate the type of animal, the algorithm and
the scenario, and then intersection counts over the 50 trials.
More specifically, column cO counts how often the intersec-
tion of people with the given animal name in the two parti-
tions is empty, cl counts how often one person is assigned
the given animal name in both partitions, etc.

For the Lambs/Wolves results, all available non-match
scores for each person are used within a partition in order
to determine the median non-match score per person. This
is true for both the UU and UC scenarios.

The construction of the random partitions for the UC sce-
nario is slightly different because of the asymmetry between
target and query images. For the UC scenario, the uncon-
trolled query images are selected from the same 16 used in
the UU scenario, and divided at random into 8 for partition
R and 8 for partition Rs. The controlled target images are
drawn from a new set of 16 controlled lighting images for
each of the 257 people. There are 64 possible match-scores
per person per partition in the UC scenario. To better match
the analysis for the UU scenario, 56 of the 64 are selected
at random when computing the median match score.

4.3. Second-Order Zoo

The existence of a second-order zoo is determined in a
fashion similar to that defined for first-order zoo. As with
the first-order zoo, we assign labels to people based upon
two data sets and then consider the intersection of these two
sets of people. However, the two data sets in this case in-
volve either a change in algorithm, A versus B, or a change
in scenario, UU to UC.

The null hypothesis HO is the same, since it depends
upon the simple idea that an animal label assigned to a per-
son in one case is independent of the assignment of that
animal label to a person in the other. Thus, p-values are still
determined using the x? test as already described.

Tables 3 and 4 summarize our findings with respect to the
existence of second-order zoos for algorithms A and B and
scenarios UU and UC. Table 3 keeps the algorithm constant
while changing the scenario from UU to UC. Table 4 keeps
the scenario the same while changing the algorithm, either
from A to B or B to A. The columns cO, c1, etc., contain the
intersection counts just as in Table 2.

Unlike the first-order zoos, whose existence was easily
demonstrated, the existence of second-order zoos is prob-
lematic. In Table 3 using a standard cutoff of 0.05 for the
p-value, a second-order zoo does not exist in 5 out of the 6
combinations of animals and algorithms, with the first row
and the last failing to reject the null hypothesis owing to the
two-tailed characteristic of the hypothesis test. A conserva-
tive cutoff of 0.01 also maintains 5 out of 6 rejections of the



existence of the second order zoo. In Table 4, the existence
of a second-order zoo is supported only for 2 of the 6 cases.

4.4. Third-Order Zoo

For a third order zoo to exist, the likelihood a person is
assigned a label using one algorithm and one scenario must
be predictive of the person receiving the same label using a
different algorithm and scenario. Again, the HO hypothesis
test is the same as before, depending solely upon the inter-
section counts. In all our tests, the intersection counts were
too low to support the existence of a third-order zoo.

5. Yager and Dunstone’s Zoo

Doddington’s definitions capture something clearly of
interest, but fail to capture relationships between match and
non-match scores. To illustrate, a person with universally
low match and non-match scores will qualify as a Goat,
even though their low non-match scores mean they are ac-
tually in no danger of being falsely rejected. This concern
for capturing relationships between match and non-match
scores brings us to the work of Yager and Dunstone [9]

5.1. Doves, Chameleons, Phantoms and Worms

Doves, chameleons, phantoms and worms are defined by
Yager and Dunstone [9] in terms of extreme match and non-
match scores and more importantly relationships between
them. As was done above, median match scores are com-
puted for each person, and then the people are sorted from
lowest to highest median match score. Similarly, a separate
sorted list of people is created where people are sorted from
lowest to highest median non-match scores.

The approach of Yager and Dunstone now differs from
that of Doddington et al. in that intermediate labels are as-
signed based upon the top and bottom quartiles in the sorted
lists just defined. Specifically, people in the group My,
are the 25% of the people with the highest average match
scores. The people in the group M, are the 25% of the
people with the lowest average match scores. Analogous
sets exist for the non-match scores, where the people in the
group N}, are the 25% of the people with the highest me-
dian non-match scores, and the people in V] are the 25% of
the people with the lowest median non-match scores.

Yager and Dunstone’s animals are defined by the inter-
sections between combinations of these four groups:

e Doves: A person who is a dove matches very well
against themselves and poorly against others. They are
easily recognized and are defined by the set M, N N;.

e Chameleons: A person who is a chameleon matches
well in general, both to themselves and to others. They
are likely to cause false accepts but not false rejects.
Chameleons belong to the set My N Nj.

e Phantoms: A person who is a phantom matches poorly
in general, both to themselves and to others. They are
likely to cause false rejects but not false accepts. Phan-
toms belong to the set M; N N;.

e Worms: A person who is a worm matches themselves
poorly and other people relatively well. They result
in disproportionate number of errors, both false rejects
and false accepts. Worms belong to the set M; N N},.

Although Yager and Dunstone concluded that Goats,
Lambs and wolves are common in biometric systems, the
reasons for the existence of a particular animal group are
complex and varied. According to them, people are not in-
herently unsuitable for biometric identification and this no-
tion has been highly exaggerated. Factors accounting for
these animal groups include enrollment procedures, feature
extraction and match algorithms, data quality, and intrinsic
properties of the user population. Yager and Dunstone con-
cluded that ”Doddington’s Zoo phenomena may be image
specific as opposed to individual specific”.

6. Evidence for Yager and Dunstone’s Zoo

For simplicity, here we will consider only the uncon-
trolled to uncontrolled (UU) scenario, and our categoriza-
tion of people as Doves, Chamelons, Phantoms and Worms
will be based upon the same 257 people and 16 images of
each person randomly divided into partitions R; and Ra.
Here too we will replace the use of means with medians.

6.1. Zeroth-Order Zoo

Because Yager and Dunstone’s animals are defined by
the intersections of sets, the existence of a zeroth-order zoo
is not guaranteed. While unlikely, it is possible that a data
set may fail to contain any instances of an animal. This
caution aside, in our experiments we see variation in the
number of people labeled as different animals, but there are
always examples of all types of animals.

Figure 1 shows histograms of the number of Doves,
Chameleons, Phantoms and Worms found in our 100 par-
titions. There 100 partitions because we have two partitions
for each of the 50 trials. Note that the range of variation
in the number of animals changes between algorithms. For
example, algorithm B produces more Worms than Doves
while A produces more Doves than Worms.

6.2. First-Order Zoo

The results for our tests of existence for a first-order
Yager and Dunstone zoo are summarized in Table 5. What
we observe is that for both algorithms a first-order zoo ex-
ists for Doves, but not for any of the other animals. This
is interesting in several respects, not least of which because
Doves are the most desirable of the animals.
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Figure 1. Histograms showing size of the sets of people labeled as Doves, Chameleons, Phantoms and Worms for algorithms A and B.

Table 5. First order zoo x? p-value to test the null hypothesis that
the chameleons, phantoms, doves and worms intersections come
from the null distribution.

Animals Algorithms | x? (p-value)
Doves A 0.0134
Chameleons A 0.3605
Phantoms A 0.6527
Worms A 0.0377
Doves B 0.0104
Chameleons B 0.1141
Phantoms B 0.08455
Worms B 0.05655

One detail concerning how the p-values are obtained for
these tests deserves mention. The use of the hypergeomet-
ric distribution for Doddington’s zoo was relatively straight
forward because the number of animals remained constant
as a fixed percent of the total number of people. As al-
ready highlighted in Figure 1, this is not true for the Yager
and Dunstone zoo. Therefore, in order to determine the ex-
pected intersection counts for these animals, it is necessary
to take into account the fact that when there are more people
labeled as an animal, the likelihood of having more people
in the intersection goes up.

To illustrate how this was handled, consider Doves for
algorithm A. A bootstrap process was used to sample pairs
of set sizes from the 100 observed number of Doves shown

in the histogram. This provides us an estimate of the proba-
bility of comparing say 10 Doves to 12 Doves or 11 Doves
to 5 Doves. For any specific pair of set sizes, the hyper-
geometric distribution defines the probability of a zero in-
tersection, an intersection of size one, etc. The probability
density function we seek is therefore found by integrating
over the different set sizes, and since the space of sets sizes
is discrete, integration becomes summation.

6.3. Second-Order Zoo

We also tested for the existence of any second-order zoos
by comparing across algorithms and the results are shown in
Table 6. For Doves, Chameleons and Phantoms the p-values
are too high for us to reject HO and we must conclude there
is no second-order zoo. For Worms, the p-values fall below
a standard 0.05 cutoff. However, a look at the intersections
reveals this is because there are more zero intersections than
HO would predict. Thus, there is actually an inverse rela-
tionship - being a Worm in one partition lessons the change
a person is a Worm in the other. It would be unwise to over-
play this last result. Suffice it to say, the p-value is not evi-
dence for a second-order Worm zoo. Given the lack of any
second-order zoos, there is no point in looking for evidence
to support the existence of a third-order zoo.

7. Summary

The presence or absence of a biometric zoo is not a
straightforward narrative and often depends on the frame-
work. In this paper we have defined and presented results



Table 6. Second order zoo x? p-value to test the null hypothe-
sis that the chameleons, phantoms, doves and worms intersections
come from the null distribution. The tests use either the same algo-
rithm with different class of underlying data or different algorithm
with the same class of underlying data.

Animal Algorithms | x? (p-value)
Chameleons A-B 0.4219
Phantoms A-B 0.2684
Doves A-B 0.1802
Worms A-B 0.0372
Chameleons B-A 0.4145
Phantoms B-A 0.2652
Doves B-A 0.07085
Worms B-A 0.03525

for the zeroth, first, second and third order zoo frameworks.
These frameworks and the results presented in this paper
can be better illustrated through Figure 2. The represen-
tative numbers are the mean intersections of the goats for
the corresponding algorithm and the scenario. Each circle
represents a first order zoo. The horizontal and the ver-
tical lines represent the second order zoo and the diago-
nals are the third order zoo, respectively. In the context

Algorithm Algorithm
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Second Order Zoo

0.72

{ First Order | _
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uu
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Figure 2. Illustration of the zoo framework using mean intersec-
tions for Goats.

of this figure, each of these frameworks can be further il-
lustrated as follows. For the first order zoo consider for
example top left circle. It is the mean intersections when
algorithm A is used with UC scenario. In this combina-
tion out of total 50 trials, 24 show no overlaps, 20 have
atleast 1 common goat between the two partitions of a trial,
2 have atleast 2 common goats and 4 trials have three goats
common between the partitions. This implies that there are
24x0420x 142> 244%3 — (). 72 mean intersections and hence
the number within the circle. We can similarly find the
mean intersection numbers for rest of the circles.

The second order zoo represented by the horizontal and
the vertical lines can be explained as follows. The top hori-
zontal line with a mean intersection of 0.22 shows a frame-
work where we use cross algorithms A - B and the scenario
UC. The horizontal arrows differ from the vertical arrows
because in the former case we use the same scenario but
different algorithms and in the latter case same algorithm
with different scenarios. These lines represent the results
of Tables 3 and 4, respectively. The third order zoo repre-
sented by the diagonal lines shows mean intersection values
when different algorithms A and B are used with different
scenarios, UU and UC.

We found a strong evidence for the presence of a first or-
der zoo in Doddington animals. However, majority of the
cases (9 out of 12) in the second order zoo show contrary
evidence. In addition, Yager and Dunstone menagerie does
not exist in the majority of the cases (6 out of 8) in the first
or the second order zoos. There is no evidence of the pres-
ence of the third order zoo in either Doddington animals
or the Yager and Dunstone menagerie. Therefore it is safe
to conclude that zoos of order greater than first are either
scarce or totally absent.
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